화학공학소재연구정보센터
Korean Journal of Materials Research, Vol.31, No.1, 16-22, January, 2021
양자점 입도제어를 통한 양자점 감응형 태양전지 단락전류 향상
Improvement of Short-Circuit Current of Quantum Dot Sensitive Solar Cell Through Various Size of Quantum Dots
E-mail:
In this study, quantum dot-sensitized solar cells (QDSSC) using CdSe/ZnS quantum dots (QD) of various sizes with green, yellow, and red colors are developed. Quantum dots, depending their different sizes, have advantages of absorbing light of various wavelengths. This absorption of light of various wavelengths increases the photocurrent production of solar cells. The absorption and emission peaks and excellent photochemical properties of the synthesized quantum dots are confirmed through UV-visible and photoluminescence (PL) analysis. In TEM analysis, the average sizes of individual green, yellow, and red quantum dots are shown to be 5 nm, 6 nm, and 8 nm. The J-V curves of QDSSC for one type of QD show a current density of 1.7 mA/cm2 and an open-circuit voltage of 0.49 V, while QDSSC using three type of QDs shows improved electrical characteristics of 5.52 mA/cm2 and 0.52 V. As a result, the photoelectric conversion efficiency of QDSSC using one type of QD is as low as 0.53 %, but QDSSC using three type of QDs has a measured efficiency of 1.4 %.
  1. Gong J, Liang J, Sumathy K, Renew. Sust. Energ. Rev., 16, 5848 (2012)
  2. An HL, Kang HR, Sun HJ, Han JH, Ahn HJ, Korean J. Mater. Res., 25(12), 672 (2015)
  3. O’regan B, Gratzel M, Nature, 353, 737 (1991)
  4. Fan K, Li R, Chen J, Shi W, Peng T, Sci. Adv. Mater., 5, 1596 (2013)
  5. Lin LY, Lee CP, Tsai KW, Yeh MH, Chen CY, Vittal R, Wu CG, Ho KC, Prog. Photovoltaics: Res. Appl., 20, 181 (2012)
  6. Ji SH, Park HS, Kim DY, Han DH, Yun HW, Kim WB, Korean J. Mater. Res., 29(3), 183 (2019)
  7. Yeh MH, Lee CP, Chou CY, Lin LY, Wei HY, Chu CW, Vittal R, Ho KC, Electrochim. Acta, 57, 277 (2011)
  8. Gu X, Song D, Zhao Y, Qiang Y, Rare Met. Mater. Eng., 43, 525 (2014)
  9. Liu CM, Mu LL, Jia JG, Zhou XW, Lin Y, Electrochim. Acta, 111, 179 (2013)
  10. Peng L, Hong H, Shi Y, Zhou X, Lin Y, Jia J, J. Alloy. Compd., 765, 355 (2018)
  11. Ha TT, Chi CH, Vy NT, Thoa NT, Huynh TD, Lam QV, Environ. Prog. Sustainable Energy, 34, 1774 (2015)
  12. Ahmad MS, Pandey AK, Abd RN, Renew. Sust. Energ. Rev., 77, 89 (2017)
  13. Shalini S., Balasundaraprabhu R., Kumar T. Satish, Prabavathy N., Senthilarasu S., Prasanna S., Int. J. Energy Res., 40(10), 1303 (2016)
  14. Sogabe T, Shen Q, Yamaguchi K, J. Photonics Energy, 6, 040901 (2016)
  15. Mali SS, Kim H, Patil PS, Hong CK, Dalton Trans., 42, 16961 (2013)
  16. Chen J, Zhao DW, Song JL, Sun XW, Deng WQ, Liu XW, Lei W, Electrochem. Commun., 11, 2265 (2009)
  17. Santra PK, Kamat PV, J. Phys. Chem. C, 132, 877 (2013)
  18. Kusuma J, Balakrishna RG, Sol. Energy, 159, 682 (2018)
  19. Park HS, Jeong DW, Kim BS, Joo SY, Lee CG, Kim WB, J. Korean Powder Metall. Inst., 24, 1 (2017)
  20. Jeong DW, Park JY, Seo HW, Myung NV, Seong TY, Kim BS, Appl. Surf. Sci., 415, 19 (2017)
  21. Park H, Choi J, Choi JP, Kim WB, J. Photochem. Photobiol. A-Chem., 351, 139 (2018)
  22. Lee YL, Lo YS, Adv. Funct. Mater., 19(4), 604 (2009)
  23. Chen J, Lei W, Deng WQ, Nanoscale, 3, 674 (2011)