화학공학소재연구정보센터
Journal of Industrial and Engineering Chemistry, Vol.96, 183-193, April, 2021
Inhibition effects of poly(N-vinylcaprolactam)/poly(e-caprolactone) amphiphilic block copolymers on methane hydrate formation
E-mail:
Homo- and copolymers of poly(N-vinylcaprolactam) PVCap are widely used in the natural gas industry as hydrate inhibitors. However, seldom studies focus on block copolymers and the biodegradability of the polymers is not taken into account as well. In this work, amphiphilic block copolymers (PVCap-b-PCL) containing different ratio of biodegradable poly(e-caprolactone) (PCL) and PVCap were synthesized. All the synthesized copolymers had narrow molecular distribution which ensured stable properties of the copolymers in the kinetic hydrate inhibition (KHI) performance. They also showed higher cloud point than PVCap. The effect of the PVCap-b-PCL copolymers on methane hydrate formation and hydrate micro-structure were studied. The copolymers used in the KHI experiments were in the form of micelles and they were found performed better than PVCap in the methane hydrate inhibition, providing much longer induction time and increased with higher PCL segment content. The PVCap-b-PCL copolymers have amphiphilic structure similar with surfactants making them also perform like antiagglomerants, effectively suppressing the hydrate agglomeration (less than 40 mm). The possible inhibition mechanism of PVCap-b-PCL was discussed. The biodegradable PCL segment has increased the biodegradability of PVCap-b-PCL as expected, indicating that environmental friendly hydrate inhibitors can be obtained by adjusting WPCL/WPVCap ratio.
  1. Storr MT, Taylor PC, Monfort JP, Rodger PM, J. Am. Chem. Soc., 126(5), 1569 (2004)
  2. Daraboina N, Malmos C, von Solms N, Fuel, 108, 749 (2013)
  3. Sharifi H, Ripmeester J, Walker VK, Englezos P, Fuel, 117, 109 (2014)
  4. Sloan ED, Koh CA, Clathrate Hydrates of Natural Gases, Third ed., Crc Press, New York, 2007.
  5. Perrin A, Musa OM, Steed JW, Chem. Soc. Rev., 42, 1996 (2013)
  6. Khurana M, Veluswamy HP, Daraboina N, Linga P, Chem. Eng. J., 370, 760 (2019)
  7. Chen J, Wang T, Zeng Z, Jiang JH, Deng B, Chen CZ, Li JY, Li CH, Tao LM, Li X, Xiao SX, Chem. Eng. J., 363, 349 (2019)
  8. Tang JF, Zeng DL, Wang CL, Chen YL, He LM, Cai N, Chem. Eng. Res. Des., 91(9), 1777 (2013)
  9. Zhou X, Liang D, Chem. Eng. J., 378, 122128 (2019)
  10. Sloan ED, Nature, 426, 353 (2003)
  11. Carroll JJ, Natural gas hydrates: a guide for engineers, Gulf Professional Publishing, 2009.
  12. Wan L, Liang DQ, Ding QH, Hou GD, Fuel, 239, 173 (2019)
  13. Kelland MA, Energy Fuels, 20(3), 825 (2006)
  14. Li M, Dong S, Li B, Liu C, J. Ind. Eng. Chem., 67, 140 (2018)
  15. Kamal MS, Hussein IA, Sultan AS, von Solms N, Renew. Sust. Energ. Rev., 60, 206 (2016)
  16. Ke W, Chen D, Chinese J. Chem. Eng., 27, 2049 (2019)
  17. Kelland MA, Energy Fuels, 32(12), 12001 (2018)
  18. Sa JH, Kwak GH, Han K, Ahn D, Cho SJ, Lee JD, Lee KH, Sci. Rep., 6, 31582 (2016)
  19. Karig SP, Shin JY, Lim JS, Lee S, Chem. Eng. Sci., 116, 817 (2014)
  20. Posteraro D, Ivall J, Maric M, Servio P, Chem. Eng. Sci., 126, 91 (2015)
  21. Li C, Bai S, Li X, Zhao Y, Ren L, Zhu K, Yuan X, ACS Omega, 3, 7371 (2018)
  22. Wang Q, Wang C, Ma S, Lu P, Dong J, ACS Sustain. Chem. Eng., 6, 13532 (2018)
  23. Rajput F, Colantuoni A, Bayahya S, Dhane R, Servio P, Maric M, J. Polym. Sci. Pol. Chem., 56, 2445 (2018)
  24. Yu K, Zhang LF, Eisenberg A, Langmuir, 12(25), 5980 (1996)
  25. Wu Q, Wang L, Fu X, Song X, Yang Q, Zhang G, Polym. Bull., 71, 1 (2013)
  26. Kang HU, Yu YC, Shin SJ, Kim J, Youk JH, Macromolecules, 46(4), 1291 (2013)
  27. Luo LB, Ranger M, Lessard DG, Le Garrec D, Gori S, Leroux JC, Rimmer S, Smith D, Macromolecules, 37(11), 4008 (2004)
  28. Gois JR, Costa JRC, Popov AV, Serra AC, Coelho JFJ, RSC Adv., 6, 16996 (2016)
  29. Yang Y, Li J, Hu M, Chen L, Bi Y, J. Polym. Res., 21, 549 (2014)
  30. Kermagoret A, Fustin CA, Bourguignon M, Detrembleur C, Jerome C, Debuigne A, Polym. Chem., 4, 2575 (2013)
  31. Moraes RM, Carvalho LT, Alves GM, Medeiros SF, Bourgeat-Lami E, Santos AM, Polymers, 12, 1252 (2020)
  32. Yu YC, Li GX, Kim J, Youk JH, Polymer, 54(22), 6119 (2013)
  33. Seo SD, Paik HJ, Lim DH, Lee JD, Energy Fuels, 31(6), 6358 (2017)
  34. Bartolozzi I, Solaro R, Schacht E, Chiellini E, Eur. Polym. J., 43, 4628 (2007)
  35. Zhu ZS, Li Y, Li XL, Li RT, Jia ZJ, Liu BR, Guo WH, Wu W, Jiang XQ, J. Control. Release, 142, 438 (2010)
  36. Xu S, Fan S, Fang S, Lang X, Wang Y, Chen J, Sci. Rep., 6, 23220 (2016)
  37. Prasad PSR, Kiran BS, J. Nat. Gas. Sci. Eng., 52, 461 (2018)
  38. Wan L, Zhang N, Liang DQ, J. Mol. Liq., 292, 111435 (2019)
  39. Indulekha S, Arunkumar P, Bahadur D, Srivastava R, Mater. Sci. Eng. C-Biomimetic Supramol. Syst., 62, 113 (2016)
  40. Fernandez-Quiroz D, Gonzalez-Gomez A, Lizardi-Mendoza J, Vazquez-Lasa B, Goycoolea FM, San Roman J, Arguelles-Monal WM, Carbohydr. Polym., 134, 92 (2015)
  41. Aguiar J, Carpena P, Molina-Bolivar JA, Ruiz CC, J. Colloid Interface Sci., 258(1), 116 (2003)
  42. Deng C, Chen XS, Yu HJ, Sun J, Lu TC, Jing XB, Polymer, 48(1), 139 (2007)
  43. da Silveira KC, Sheng Q, Tian W, Fong C, Maeda N, Lucas EF, Wood CD, Fuel, 188, 522 (2017)
  44. Shtanko NI, Lequieu W, Goethals EJ, Du Prez FE, Polym. Int., 52, 1605 (2003)
  45. Liu J, Debuigne A, Detrembleur C, Jerome C, Adv. Healthc. Mater., 3, 1941 (2014)
  46. Xia Y, Burke NAD, Stover HDH, Macromolecules, 39(6), 2275 (2006)
  47. Meeussen F, Nies E, Berghmans H, Verbrugghe S, Goethals E, Du Prez F, Polymer, 41(24), 8597 (2000)
  48. Shao LD, Hu MQ, Chen L, Xu L, Bi YM, React. Funct. Polym., 72(6), 407 (2012)
  49. Sina M, Nazari K, Mohammad-Taheri M, Moradi MR, Chem. Eng. Technol., 36(7), 1117 (2013)
  50. Veluswamy HP, Ang WJ, Zhao D, Linga P, Chem. Eng. Sci., 132, 186 (2015)
  51. Daraboina N, Ripmeester J, Walker V, Englezos P, Energy Fuels, 25, 4398 (2017)
  52. Lim J, Kim E, Seo Y, Energy Conv. Manag., 124, 578 (2016)
  53. Sloan ED, Subramanian S, Matthews PN, Lederhos JP, Khokhar AA, Ind. Eng. Chem. Res., 37(8), 3124 (1998)
  54. Gordienko R, Ohno H, Singh VK, Jia Z, Ripmeester JA, Walker VK, PLoS One, 5 (2010)
  55. Bellucci MA, Walsh MR, Trout BL, J. Phys. Chem. C, 122, 2673 (2018)
  56. Ji H, Chen D, Zhao C, Wu G, J. Phys. Chem. C, 122, 1318 (2018)
  57. Ivall J, Pasieka J, Posteraro D, Servio P, Energy Fuels, 29(4), 2329 (2015)
  58. Varma-Nair M, Costello CA, Colle KS, King HE, J. Appl. Polym. Sci., 103(4), 2642 (2007)
  59. Jimenez-Angeles F, Firoozabadi A, ACS Cent. Sci., 4, 820 (2018)
  60. Tang C, Zhou X, Li D, Zhao X, Liang D, Fuel, 241, 505 (2018)
  61. Stern L, Kirby S, Circone S, Durham W, Am. Mineral., 89, 1162 (2004)
  62. Stern LA, Lorenson TD, Mar. Petrol. Geol., 58, 206 (2014)
  63. Lederhos JP, Long JP, Sum A, Christiansen RL, Sloan ED, Chem. Eng. Sci., 51(8), 1221 (1996)
  64. Zhong JR, Zeng XY, Zhou FH, Ran QD, Sun CY, Zhong RQ, Yang LY, Chen GJ, Koh CA, Sci. Rep., 6, 38855 (2016)
  65. Ohmura R, Matsuda S, Uchida T, Ebinuma T, Narita H, Cryst. Growth Des., 5, 953 (2005)
  66. Bhattacharjee G, Kushwaha OS, Kumar A, Khan MY, Patel JN, Kumar R, Ind. Eng. Chem. Res., 56, 3687 (2017)