Journal of Industrial and Engineering Chemistry, Vol.99, 74-80, July, 2021
A comparative method for estimating the membrane mass transfer resistance of a ceramic hollow fiber membrane contactor using a Wetted-Wall Column
E-mail:
In this study, an experimental method for estimating the relative membrane mass transfer resistance (RHFMCm ) by comparing the results obtained using a ceramic hollow fiber membrane contactor (HFMC) with those obtained using a wetted-wall column (WWC) was proposed. The method was successfully applied for the determination of the optimal pore structure to increase the CO2 absorption. To find a relationship between relative RHFMC m in the ceramic HFMCs and its pore characteristics, the method was tested on two ceramic HFMCs prepared by non-solvent induced phase separation method. The pore structures were analyzed by scanning electron microscopy, capillary flow porometry, and gas permeability measurements. The results obtained show that the relative RHFMC m contribution ranged from ~90 to ~27% of the overall mass transfer resistance (RHFMC o ) and was related to the variation of the pore structure properties. To the best of our knowledge, this is the first study to estimate the relative RHFMC m element of the ceramic HFMC through an experimental comparison with a WWC performed in the same experimental conditions. The proposed method is expected to provide a practical solution for estimating the relative RHFMC m of the ceramic HFMCs.
Keywords:CO2 absorption;Hollow fiber membrane contactor;Wetted wall column;Comparative method;Membrane mass transfer resistance;Simple membrane screening
- Zhao SF, Feron PM, Deng LY, Favre E, Chabanon E, Yan SP, Hou JW, Chen V, Qi H, J. Membr. Sci., 511, 180 (2016)
- Younas M, Rezakazemi M, Daud M, Wazir MB, Ahmad S, Ullah N, Inamuddin, Ramakrishna S, Prog. Energy Combust. Sci., 80, 100849 (2020)
- Ibrahim MH, El-Naas MH, Zhang ZE, Van der Bruggen B, Energy Fuels, 32(2), 963 (2018)
- Bazhenov SD, Bildyukevich AV, Volkov AV, Fibers, 6, 76 (2018)
- Koonaphapdeelert S, Wu ZT, Li K, Chem. Eng. Sci., 64(1), 1 (2009)
- Lee HJ, Magnone E, Park JH, J. Membr. Sci., 494, 143 (2015)
- Lee HJ, Park JH, J. Membr. Sci., 518, 79 (2016)
- Lee HJ, Park YG, Kim MK, Lee SH, Park JH, Sep. Purif. Technol., 220, 189 (2019)
- Magnone E, Lee HJ, Che JW, Park JH, J. Ind. Eng. Chem., 42, 19 (2016)
- Sohaib Q, Muhammad A, Younas M, Rezakazemi M, Sep. Purif. Technol., 241, 116677 (2020)
- Bakeri G, Ismail AF, Shariaty-Niassar M, Matsuura T, J. Membr. Sci., 363(1-2), 103 (2010)
- Atchariyawut S, Jiraratananon R, Wang R, Sep. Purif. Technol., 63(1), 15 (2008)
- Mavroudi M, Kaldis SP, Sakellaropoulos GP, J. Membr. Sci., 272(1-2), 103 (2006)
- Sohaib Q, Muhammad A, Younas M, Rezakazemi M, Druon-Bocquet S, Sanchez-Marcano J, Sep. Purif. Technol., 254, 117644 (2021)
- Gabelman A, Hwang ST, J. Membr. Sci., 159(1-2), 61 (1999)
- Kreulen H, Smolders CA, Versteeg GF, van Swaaij WPM, Chem. Eng. Sci., 48, 2093 (1993)
- Li K, Kong JF, Tan XY, Chem. Eng. Sci., 55(23), 5579 (2000)
- Bakeri G, Matsuura T, Ismail AF, J. Membr. Sci., 383(1-2), 159 (2011)
- Karlsson H, Svensson H, Energy Procedia, 114, 2009 (2017)
- Dugas RE, The University of Texas at Austin, Austin, Texas, 2009.
- Kim JH, Kim HY, Kim JY, Hwang SJ, Lee KS, J. Ind. Eng. Chem., 61, 152 (2018)
- Spedding PL, Jones MT, Chem. Eng. J., 37, 165 (1988)
- Nielsen CHE, Kill S, Thomsen HW, Dam-Johansen K, Chem. Eng. Sci., 53(3), 495 (1998)
- Grunig J, Lyagin E, Horn S, Skale T, Kraume M, Chem. Eng. Sci., 69(1), 329 (2012)
- Chinju H, Uchiyama K, Mori YH, AIChE J., 46(5), 937 (2000)
- Samadi Z, Haghshenasfard M, Moheb A, Chem. Eng. Technol., 37(3), 462 (2014)
- Wang L, An S, Yu S, Zhang S, Zhang Y, Li M, Li Q, Int. J. Greenh. Gas Control., 64, 276 (2017)
- Rodriguez-Flores HA, Mello LC, Salvagnini WM, de Paiva JL, Chem. Eng. Process., 73, 1 (2013)
- Puxty G, Rowland R, Allport A, Yang Q, Bown M, Burns R, Maeder M, Attalla M, Environ. Sci. Technol., 43(16), 6427 (2009)
- Kim J, Lee J, Lee Y, Kim H, Kim E, Lee KS, Energy, 187, 115908 (2019)
- Cullinane JT, The University of Texas at Austin, Austin, Texas, 2005.
- Rehman WU, Khan A, Mushtaq N, Younas M, An X, Saddique M, Farrukh S, Hu Y, Rezakazemi M, J. Environ. Chem. Eng., 8(6), 104475 (2020)
- Ahmad S, Marson GV, Zeb W, Ur Rehman W, Younas M, Farrukh S, Rezakazemi M, Sep. Purif. Technol., 250, 117209 (2020)
- Rahbari-Sisakht M, Ismail AF, Rana D, Matsuura T, J. Membr. Sci., 415-416, 221 (2012)
- Conway W, Bruggink S, Beyad Y, Luo WL, Melian-Cabrera I, Puxty G, Feron P, Chem. Eng. Sci., 126, 446 (2015)
- Abdulhameed MA, Othman MHD, Al Joda HNA, Ismail AF, Matsuura T, Harun Z, Rahman MA, Puteh MH, Jaafar J, J. Adv. Ceram., 6, 330 (2017)
- Atchariyawut S, Jiraratananon R, Wang R, J. Membr. Sci., 304(1-2), 163 (2007)
- Atchariyawut S, Feng C, Wang R, Jiraratananon R, Liang DT, J. Membr. Sci., 285(1-2), 272 (2006)
- Lee HJ, Binns M, Park SJ, Magnone E, Park JH, Korean J. Chem. Eng., 36(10), 1669 (2019)
- Karoor S, Sirkar KK, Ind. Eng. Chem. Res., 32, 674 (1993)
- Lee YT, Noble RD, Yeom BY, Park YI, Lee KH, J. Membr. Sci., 194(1), 57 (2001)
- Wang R, Zhang HY, Feron PHM, Liang DT, Sep. Purif. Technol., 46(1-2), 33 (2005)
- Al-Marzouqi MH, El-Naas MH, Marzouk SAM, Al-Zarooni MA, Abdullatif N, Faiz R, Sep. Purif. Technol., 59(3), 286 (2008)