화학공학소재연구정보센터
Journal of Industrial and Engineering Chemistry, Vol.99, 74-80, July, 2021
A comparative method for estimating the membrane mass transfer resistance of a ceramic hollow fiber membrane contactor using a Wetted-Wall Column
E-mail:
In this study, an experimental method for estimating the relative membrane mass transfer resistance (RHFMCm ) by comparing the results obtained using a ceramic hollow fiber membrane contactor (HFMC) with those obtained using a wetted-wall column (WWC) was proposed. The method was successfully applied for the determination of the optimal pore structure to increase the CO2 absorption. To find a relationship between relative RHFMC m in the ceramic HFMCs and its pore characteristics, the method was tested on two ceramic HFMCs prepared by non-solvent induced phase separation method. The pore structures were analyzed by scanning electron microscopy, capillary flow porometry, and gas permeability measurements. The results obtained show that the relative RHFMC m contribution ranged from ~90 to ~27% of the overall mass transfer resistance (RHFMC o ) and was related to the variation of the pore structure properties. To the best of our knowledge, this is the first study to estimate the relative RHFMC m element of the ceramic HFMC through an experimental comparison with a WWC performed in the same experimental conditions. The proposed method is expected to provide a practical solution for estimating the relative RHFMC m of the ceramic HFMCs.
  1. Zhao SF, Feron PM, Deng LY, Favre E, Chabanon E, Yan SP, Hou JW, Chen V, Qi H, J. Membr. Sci., 511, 180 (2016)
  2. Younas M, Rezakazemi M, Daud M, Wazir MB, Ahmad S, Ullah N, Inamuddin, Ramakrishna S, Prog. Energy Combust. Sci., 80, 100849 (2020)
  3. Ibrahim MH, El-Naas MH, Zhang ZE, Van der Bruggen B, Energy Fuels, 32(2), 963 (2018)
  4. Bazhenov SD, Bildyukevich AV, Volkov AV, Fibers, 6, 76 (2018)
  5. Koonaphapdeelert S, Wu ZT, Li K, Chem. Eng. Sci., 64(1), 1 (2009)
  6. Lee HJ, Magnone E, Park JH, J. Membr. Sci., 494, 143 (2015)
  7. Lee HJ, Park JH, J. Membr. Sci., 518, 79 (2016)
  8. Lee HJ, Park YG, Kim MK, Lee SH, Park JH, Sep. Purif. Technol., 220, 189 (2019)
  9. Magnone E, Lee HJ, Che JW, Park JH, J. Ind. Eng. Chem., 42, 19 (2016)
  10. Sohaib Q, Muhammad A, Younas M, Rezakazemi M, Sep. Purif. Technol., 241, 116677 (2020)
  11. Bakeri G, Ismail AF, Shariaty-Niassar M, Matsuura T, J. Membr. Sci., 363(1-2), 103 (2010)
  12. Atchariyawut S, Jiraratananon R, Wang R, Sep. Purif. Technol., 63(1), 15 (2008)
  13. Mavroudi M, Kaldis SP, Sakellaropoulos GP, J. Membr. Sci., 272(1-2), 103 (2006)
  14. Sohaib Q, Muhammad A, Younas M, Rezakazemi M, Druon-Bocquet S, Sanchez-Marcano J, Sep. Purif. Technol., 254, 117644 (2021)
  15. Gabelman A, Hwang ST, J. Membr. Sci., 159(1-2), 61 (1999)
  16. Kreulen H, Smolders CA, Versteeg GF, van Swaaij WPM, Chem. Eng. Sci., 48, 2093 (1993)
  17. Li K, Kong JF, Tan XY, Chem. Eng. Sci., 55(23), 5579 (2000)
  18. Bakeri G, Matsuura T, Ismail AF, J. Membr. Sci., 383(1-2), 159 (2011)
  19. Karlsson H, Svensson H, Energy Procedia, 114, 2009 (2017)
  20. Dugas RE, The University of Texas at Austin, Austin, Texas, 2009.
  21. Kim JH, Kim HY, Kim JY, Hwang SJ, Lee KS, J. Ind. Eng. Chem., 61, 152 (2018)
  22. Spedding PL, Jones MT, Chem. Eng. J., 37, 165 (1988)
  23. Nielsen CHE, Kill S, Thomsen HW, Dam-Johansen K, Chem. Eng. Sci., 53(3), 495 (1998)
  24. Grunig J, Lyagin E, Horn S, Skale T, Kraume M, Chem. Eng. Sci., 69(1), 329 (2012)
  25. Chinju H, Uchiyama K, Mori YH, AIChE J., 46(5), 937 (2000)
  26. Samadi Z, Haghshenasfard M, Moheb A, Chem. Eng. Technol., 37(3), 462 (2014)
  27. Wang L, An S, Yu S, Zhang S, Zhang Y, Li M, Li Q, Int. J. Greenh. Gas Control., 64, 276 (2017)
  28. Rodriguez-Flores HA, Mello LC, Salvagnini WM, de Paiva JL, Chem. Eng. Process., 73, 1 (2013)
  29. Puxty G, Rowland R, Allport A, Yang Q, Bown M, Burns R, Maeder M, Attalla M, Environ. Sci. Technol., 43(16), 6427 (2009)
  30. Kim J, Lee J, Lee Y, Kim H, Kim E, Lee KS, Energy, 187, 115908 (2019)
  31. Cullinane JT, The University of Texas at Austin, Austin, Texas, 2005.
  32. Rehman WU, Khan A, Mushtaq N, Younas M, An X, Saddique M, Farrukh S, Hu Y, Rezakazemi M, J. Environ. Chem. Eng., 8(6), 104475 (2020)
  33. Ahmad S, Marson GV, Zeb W, Ur Rehman W, Younas M, Farrukh S, Rezakazemi M, Sep. Purif. Technol., 250, 117209 (2020)
  34. Rahbari-Sisakht M, Ismail AF, Rana D, Matsuura T, J. Membr. Sci., 415-416, 221 (2012)
  35. Conway W, Bruggink S, Beyad Y, Luo WL, Melian-Cabrera I, Puxty G, Feron P, Chem. Eng. Sci., 126, 446 (2015)
  36. Abdulhameed MA, Othman MHD, Al Joda HNA, Ismail AF, Matsuura T, Harun Z, Rahman MA, Puteh MH, Jaafar J, J. Adv. Ceram., 6, 330 (2017)
  37. Atchariyawut S, Jiraratananon R, Wang R, J. Membr. Sci., 304(1-2), 163 (2007)
  38. Atchariyawut S, Feng C, Wang R, Jiraratananon R, Liang DT, J. Membr. Sci., 285(1-2), 272 (2006)
  39. Lee HJ, Binns M, Park SJ, Magnone E, Park JH, Korean J. Chem. Eng., 36(10), 1669 (2019)
  40. Karoor S, Sirkar KK, Ind. Eng. Chem. Res., 32, 674 (1993)
  41. Lee YT, Noble RD, Yeom BY, Park YI, Lee KH, J. Membr. Sci., 194(1), 57 (2001)
  42. Wang R, Zhang HY, Feron PHM, Liang DT, Sep. Purif. Technol., 46(1-2), 33 (2005)
  43. Al-Marzouqi MH, El-Naas MH, Marzouk SAM, Al-Zarooni MA, Abdullatif N, Faiz R, Sep. Purif. Technol., 59(3), 286 (2008)