화학공학소재연구정보센터
Journal of Industrial and Engineering Chemistry, Vol.103, 118-123, November, 2021
Controlled fabrication and electrochemical corrosion behavior of ultrathin Ni-Cu alloy foil
E-mail:,
Cost-effective ultrathin alloy foils (<20 lm) are highly expected with the development of electronic industry and micro-system technology. In this paper, electrodeposition combined with vacuum sintering is used to fabricate a Ni-Cu alloy foil with thickness of 12.0 (±0.2) lm. For the ultrathin Ni-Cu alloy foil, a densified structure without pores can be achieved by prolonging sintering duration at 900 ℃ for 3 h. Under the current density of 10 mA cm-2, 700 s is the optimal electrodeposition time to obtain the highesttensile strength (187 MPa) with the Ni content of 41.5 wt.% in the alloy foil. Compared with Cu foil, Ni-Cu alloy foil shows superior corrosion resistance in 3.5 wt.% NaCl solution and also HCl solutions (0.5 mol/L, 1.0 mol/L, 2.0 mol/L), respectively. The uniform composition and defect-free surface, excellent tensile strength and corrosion resistance together exhibits the great application potential of the obtained Ni-Cu alloy foil, which may provide an inspiration for future development of integrated electronic or medical devices.
  1. Seiler M, Patschger A, Bliedtner J, J. Laser Appl., 28 (2016)
  2. Gupta S, Navaraj WT, et al., Electronics, 2, 1 (2018)
  3. Sarac U, Oksuzoglu RM, Baykul MC, J. Mater. Sci.: Mater. Electron., 23, 2110 (2012)
  4. Lee H, Coutu RA, Mall S, Leedy KD, J. Micromech. Microeng., 16, 557 (2006)
  5. Chen S, Brown L, Levendorf M, Cai W, Ju SY, Edgeworth J, Li X, Magnuson CW, Velamakanni A, Piner RD, ACS nano, 5, 1321 (2011)
  6. Kim SH, Kim JY, Yu J, Lee T, J. Electron. Mater., 33, 948 (2004)
  7. Metikos-Hukovic M, Babic R, Skugor I, Grubac Z, Corrosion Sci., 53, 347 (2011)
  8. Ngamlerdpokin K, Tantavichet N, Int. J. Hydrog. Energy, 39(6), 2505 (2014)
  9. Baskaran I, Narayanan TS, Stephen A, Mater. Lett., 60, 1990 (2006)
  10. Haseeb A, Albers U, Bade K, Wear, 264, 106 (2008)
  11. Iselt D, Gaitzsch U, Oswald S, Fahler S, Schultz L, Schlorb H, Electrochim. Acta, 56(14), 5178 (2011)
  12. Ranjbar M, Ahadian M, Dolati A, Mater. Sci. Eng. B-Solid State Mater. Adv. Technol., 127, 17 (2006)
  13. Safak M, Alper M, Kockar H, J. Magn. Magn. Mater., 304, e784 (2006)
  14. Gade SK, Thoen PM, Way JD, J. Membr. Sci., 316(1-2), 112 (2008)
  15. Wu HR, Susanto A, Lian K, Appl. Surf. Sci., 394, 63 (2017)
  16. Volobujeva O, Altosaar M, Raudoja J, Mellikov E, Grossberg M, Kaupmees L, Barvinschi P, Sol. Energy Mater. Sol. Cells, 93(1), 11 (2009)
  17. Butera A, Gomez J, Barnard J, Weston J, Physica B, 384, 262 (2006)
  18. Zhang X, Wu T, Jiang Q, Wang H, Zhu H, Chen Z, Jiang R, Niu T, Li Z, Zhang Y, Small, 15, 180539 (2019)
  19. Choi I, Matlock D, Olson D, Mater. Sci. Eng. A-Struct. Mater. Prop. Microstruct. Process., 124, L15 (1990)
  20. Barnes R, Mazey D, Acta Metall., 6, 1 (1958)
  21. Clay B, Greenwood G, Phil. Mag., 25, 1201 (1972)
  22. Yu LP, Jiang Y, He YH, Liu XL, Zhang HB, Mater. Chem. Phys., 163, 355 (2015)
  23. Wang KC, Xia M, Xiao T, Lei T, Yan WS, Mater. Chem. Phys., 186, 61 (2017)
  24. Wang SH, Guo XW, Yang HY, Dai JC, Zhu RY, Gong J, Peng LM, Ding WJ, Appl. Surf. Sci., 288, 530 (2014)
  25. Arthanari S, Jang JC, Shin KS, J. Alloy. Compd., 783, 494 (2019)
  26. Alfantazi A, Ahmed T, Tromans D, Mater. Des., 30, 2425 (2009)
  27. Wang P, Zhang D, Qiu R, Wan Y, Wu J, Corrosion Sci., 80, 366 (2014)
  28. Hegazy M, El-Tabei A, Bedair A, Sadeq M, Corrosion Sci., 54, 219 (2012)
  29. Liu S, Hou HY, Liu XX, Duan JX, Yao Y, Liao QS, Li J, Yang YZ, J. Hazard. Mater., 324, 357 (2017)
  30. Yu L, Jiang Y, He Y, Liu C, J. Alloy. Compd., 638, 7 (2015)
  31. Moya AA, J. Power Sources, 397, 124 (2018)
  32. Liu C, Bi Q, Matthews A, Corrosion Sci., 43, 1953 (2001)