Journal of Industrial and Engineering Chemistry, Vol.103, 118-123, November, 2021
Controlled fabrication and electrochemical corrosion behavior of ultrathin Ni-Cu alloy foil
E-mail:,
Cost-effective ultrathin alloy foils (<20 lm) are highly expected with the development of electronic industry and micro-system technology. In this paper, electrodeposition combined with vacuum sintering is used to fabricate a Ni-Cu alloy foil with thickness of 12.0 (±0.2) lm. For the ultrathin Ni-Cu alloy foil, a densified structure without pores can be achieved by prolonging sintering duration at 900 ℃ for 3 h. Under the current density of 10 mA cm-2, 700 s is the optimal electrodeposition time to obtain the highesttensile strength (187 MPa) with the Ni content of 41.5 wt.% in the alloy foil. Compared with Cu foil, Ni-Cu alloy foil shows superior corrosion resistance in 3.5 wt.% NaCl solution and also HCl solutions (0.5 mol/L, 1.0 mol/L, 2.0 mol/L), respectively. The uniform composition and defect-free surface, excellent tensile strength and corrosion resistance together exhibits the great application potential of the obtained Ni-Cu alloy foil, which may provide an inspiration for future development of integrated electronic or medical devices.
- Seiler M, Patschger A, Bliedtner J, J. Laser Appl., 28 (2016)
- Gupta S, Navaraj WT, et al., Electronics, 2, 1 (2018)
- Sarac U, Oksuzoglu RM, Baykul MC, J. Mater. Sci.: Mater. Electron., 23, 2110 (2012)
- Lee H, Coutu RA, Mall S, Leedy KD, J. Micromech. Microeng., 16, 557 (2006)
- Chen S, Brown L, Levendorf M, Cai W, Ju SY, Edgeworth J, Li X, Magnuson CW, Velamakanni A, Piner RD, ACS nano, 5, 1321 (2011)
- Kim SH, Kim JY, Yu J, Lee T, J. Electron. Mater., 33, 948 (2004)
- Metikos-Hukovic M, Babic R, Skugor I, Grubac Z, Corrosion Sci., 53, 347 (2011)
- Ngamlerdpokin K, Tantavichet N, Int. J. Hydrog. Energy, 39(6), 2505 (2014)
- Baskaran I, Narayanan TS, Stephen A, Mater. Lett., 60, 1990 (2006)
- Haseeb A, Albers U, Bade K, Wear, 264, 106 (2008)
- Iselt D, Gaitzsch U, Oswald S, Fahler S, Schultz L, Schlorb H, Electrochim. Acta, 56(14), 5178 (2011)
- Ranjbar M, Ahadian M, Dolati A, Mater. Sci. Eng. B-Solid State Mater. Adv. Technol., 127, 17 (2006)
- Safak M, Alper M, Kockar H, J. Magn. Magn. Mater., 304, e784 (2006)
- Gade SK, Thoen PM, Way JD, J. Membr. Sci., 316(1-2), 112 (2008)
- Wu HR, Susanto A, Lian K, Appl. Surf. Sci., 394, 63 (2017)
- Volobujeva O, Altosaar M, Raudoja J, Mellikov E, Grossberg M, Kaupmees L, Barvinschi P, Sol. Energy Mater. Sol. Cells, 93(1), 11 (2009)
- Butera A, Gomez J, Barnard J, Weston J, Physica B, 384, 262 (2006)
- Zhang X, Wu T, Jiang Q, Wang H, Zhu H, Chen Z, Jiang R, Niu T, Li Z, Zhang Y, Small, 15, 180539 (2019)
- Choi I, Matlock D, Olson D, Mater. Sci. Eng. A-Struct. Mater. Prop. Microstruct. Process., 124, L15 (1990)
- Barnes R, Mazey D, Acta Metall., 6, 1 (1958)
- Clay B, Greenwood G, Phil. Mag., 25, 1201 (1972)
- Yu LP, Jiang Y, He YH, Liu XL, Zhang HB, Mater. Chem. Phys., 163, 355 (2015)
- Wang KC, Xia M, Xiao T, Lei T, Yan WS, Mater. Chem. Phys., 186, 61 (2017)
- Wang SH, Guo XW, Yang HY, Dai JC, Zhu RY, Gong J, Peng LM, Ding WJ, Appl. Surf. Sci., 288, 530 (2014)
- Arthanari S, Jang JC, Shin KS, J. Alloy. Compd., 783, 494 (2019)
- Alfantazi A, Ahmed T, Tromans D, Mater. Des., 30, 2425 (2009)
- Wang P, Zhang D, Qiu R, Wan Y, Wu J, Corrosion Sci., 80, 366 (2014)
- Hegazy M, El-Tabei A, Bedair A, Sadeq M, Corrosion Sci., 54, 219 (2012)
- Liu S, Hou HY, Liu XX, Duan JX, Yao Y, Liao QS, Li J, Yang YZ, J. Hazard. Mater., 324, 357 (2017)
- Yu L, Jiang Y, He Y, Liu C, J. Alloy. Compd., 638, 7 (2015)
- Moya AA, J. Power Sources, 397, 124 (2018)
- Liu C, Bi Q, Matthews A, Corrosion Sci., 43, 1953 (2001)