화학공학소재연구정보센터
Journal of Industrial and Engineering Chemistry, Vol.103, 175-186, November, 2021
Self-antibacterial chitosan/Aloe barbadensis Miller hydrogels releasing nitrite for biomedical applications
E-mail:
Because of the toxic glutaraldehyde, the chitosan-glutaraldehyde hydrogels are seriously limited in biomedical applications. In this study, exploiting bioactive compounds of Aloe barbadensis Miller, the chitosan/ Aloe barbadensis Miller-glutaraldehyde (CS/AV-GDA) hydrogels were fabricated with 4-fold lower glutaraldehyde concentration without compromising hydrogel characteristics. The gelation time was controlled from a few seconds to several hours. The elastic modulus was varied from 483 to 99940 Pa. The CS/AV-GDA hydrogels could release the natural nitrite amount from 24.0 to 89.6 μM within the first hour for antibacterial activity, then continuously deliver a few μM every next hour for cell activities. The antibacterial test against Escherichia coli and Staphylococcus aureus revealed that the CS/AV-GDA hydrogels could kill the planktonic bacteria 5-fold more highly than control and prevent bacteria attachment on hydrogel surface effectively. Although the CS/AV-GDA hydrogels consumed only 0.25% glutaraldehyde concentration, their antibacterial capacities were comparable to chitosan-only hydrogels with 2% glutaraldehyde. For cytotoxicity tests, the CS/AV-GDA hydrogels using 0.25% glutaraldehyde concentration induce the human dermal fibroblasts proliferation significantly. All CS/AV-GDA hydrogels with glutaraldehyde crosslinker less than 1% showed non-cytotoxicity. As a result, the new CS/AV-GDA hydrogels might become an attractive candidate for medicine regeneration and tissue engineering.
  1. Thi TTH, Sinh LH, Huynh DP, Nguyen DH, Huynh C, Front. Chem., 8, 19 (2020)
  2. Peers S, Montembault A, Ladaviere C, J. Control. Release, 326, 150 (2020)
  3. Kim SY, Park BJ, Lee YK, Park NJ, Park KM, Hwang YS, Park KD, J. Ind. Eng. Chem., 73, 142 (2019)
  4. Le Thi P, Lee Y, Tran DL, Thi TTH, Park KD, J. Biomater. Appl., 34(9), 1216 (2020)
  5. Schuurmans CCL, Mihajlovic M, Hiemstra C, Ito K, Hennink WE, Vermonden T, Biomaterials, 268 (2021)
  6. Ko YG, Kwon OH, J. Ind. Eng. Chem., 56, 147 (2020)
  7. Dang LH, Doan P, Nhi TTY, Nguyen DT, Nguyen BT, Nguyen TP, Tran NQ, Int. J. Biol. Macromol., 185, 592 (2021)
  8. Fu J, Yang F, Guo Z, New J. Chem., 42(21), 17162 (2018)
  9. Shin JY, Jeong SJ, Lee WK, J. Ind. Eng. Chem., 80, 862 (2019)
  10. Kim DS, Choi HS, Yang X, Yang JH, Lee JH, Yoo HY, Lee JY, Park CH, Kim SW, J. Ind. Eng. Chem., 81, 108 (2020)
  11. Saini S, Gupta A, Singh N, Sheikh J, J. Ind. Eng. Chem., 82, 138 (2020)
  12. Lih E, Lee JS, Park KM, Park KD, Acta Biomater., 8(9), 3261 (2012)
  13. Morales A, Labidi J, Gullon P, J. Ind. Eng. Chem., 81, 475 (2020)
  14. Hes M, Dziedzic K, Gorecka D, Jedrusek-Golinska A, Gujska E, Plant Foods Hum. Nutr., 74(3), 255 (2019)
  15. Rahman S, Carter P, Bhattarai N, J. Funct. Biomater., 8(1), 6 (2017)
  16. Klebanoff SJ, Free Radic. Biol. Med., 14(4), 351 (1993)
  17. Vitturi DA, Patel RP, Free Radic. Biol. Med., 51(4), 805 (2011)
  18. Piknova B, Kocharyan A, Schechter AN, Silva AC, Brain Res., 1407, 62 (2011)
  19. Peter H, Amala R, Laboratory Handbook for the Fractionation of Natural Extracts, Springer, Boston, MA, 1998.
  20. Nguyen DH, Vo TNN, Le NTT, Thi DPN, Thi TTH, Green Process. Synth., 9(1), 429 (2020)
  21. Satyajit S, Lutfun N, Natural Products Isolation, third ed., Humana Press, New Jersey, United States, 2012.
  22. Nguyen DH, Vo TNN, Nguyen NT, Ching YC, Thi TTH, PloS One, 15(9) (2020)
  23. Ainsworth EA, Gillespie KM, Nat. Protoc., 2(4), 875 (2007)
  24. Bianchi-Bosisio A, Encyclopedia of Analytical Science, Oxford, pp.357 2005.
  25. Thi TTH, Lee Y, Le Thi P, Park KD, Acta. Biomater., 67, 66 (2018)
  26. Thi TTH, Lee YK, Thi PL, Park KD, Macromol. Res., 27(8), 811 (2019)
  27. Thi TTH, Lee Y, Tyu SB, Nguyen DH, Park KD, Biopolymers, 109(1) (2018)
  28. Nicolau-Lapena I, Colas-Meda P, Alegre I, Aguilo-Aguayo I, Muranyi P, Vinas I, Prog. Org. Coat., 151 (2021)
  29. Elbandy MA, Abed SM, Gad SSA, Abdel-Fadeel MG, J. Dairy Sci., 9(2), 191 (2014)
  30. Oh HM, Kang E, Li Z, Cho IS, Kim DE, Mallick S, Kang SW, Roh KH, Huh KM, J. Ind. Eng. Chem., 80, 820 (2019)
  31. Lin P, Liu L, He G, Zhang T, Yang M, Cai J, Fan L, Tao S, Int. J. Biol. Macromol., 162, 1692 (2020)
  32. Thi TTH, Lee YK, Thi PL, Park KD, J. Ind. Eng. Chem., 78, 34 (2019)
  33. Ahmed ME, Mohamed HM, Mohamed MI, Kandile NG, Int. J. Biol. Macromol., 162, 1388 (2020)
  34. Asadi N, Pazoki-Toroudi H, Del Bakhshayesh AR, Akbarzadeh A, Davaran S, Annabi N, Int. J. Biol. Macromol., 170, 728 (2021)
  35. Wang L, Neumann M, Fu T, Li W, Cheng X, Su BL, Curr. Opin. Colloid Interface Sci., 38, 135 (2018)
  36. Tran HDN, Park KD, Ching YC, Huynh C, Nguyen DH, J. Ind. Eng. Chem., 89, 58 (2020)
  37. Olivia PM, Joao VM, Biofouling, 17(2), 93 (2001)
  38. Pandey R, Mishra A, Appl. Biochem. Biotechnol., 160(5), 1356 (2010)