Polymer(Korea), Vol.27, No.3, 176-182, May, 2003
불소함유 에폭시 수지의 합성, 경화 거동 및 유변학적 특성
Synthesis, Cure Behavior, and Rheological Properties of Fluorine-Containing Epoxy Resins
E-mail:
초록
피리딘을 촉매로 사용하여 2-chloro-α,α,α-trifluorotoluene과 glycerol diglycidyl ether를 반응시켜 불소함유 에폭시 수지인 2-trifluorotoluene diglycidylether (FER)을 합성하였다. FER/DDM 시스템의 경화 거동은 동적 DSC와 등온 DSC 열분석을 통하여 알아보았으며, Flynn-Wall-Ozawa식을 사용하여 경화 활성화 에너지 (Ea)를 계산하였다. 또한, 본 시스템의 유변학적 특성은 레오미터를 이용하여 등온 조건하에서 고찰하였으며, Arrhenius식을 사용하여 젤화 시간과 경화 온도에 의해 가교 활성화 에너지 (Ec)를 구하였다. 실험 결과, FT-IR, 13C NMR, 그리고 19F NMR 분광법 분석을 통하여 합성한 수지의 화학 구조를 확인하였으며, FER/DDM 시스템의 Ea는 53.4 kJ/mol이었으며, 경화 반응의 전환율과 전환 속도는 경화 온도가 높을수록 높은 값을 나타내었다. 시스템의 Ec는 41.6 kJ/mol이었으며, 경화 온도가 높을수록 젤화 시간이 단축되었다.
The fluorine-containing epoxy resin, 2-trifluorotoluene diglycidylether (FER) was prepared by reaction of 2-chloro-α,α,α-trifluorotoluene with glycerol diglycidylether in the presence of pyridine catalyst. Curing behavior of FER/DDM system was investigated using dynamic and isothermal DSC. Cure activation energy (Ea) was determined by Flynn-Wall-Ozawa’s equation. The rheological properties of FER/DDM system were studied under isothermal condition using a rheometer. Cross-linking activation energy (Ec) was determined from the Arrhenius equation based on gel time and curing temperature. As a result, the chemical structure of FER was confirmed by FT-IR, 13C NMR, and 19F NMR spectroscopy. The cure activation energy of FER/DDM system was 53.4 kJ/mol and conversion and conversion rate were increased with the curing temperature. The cross-linking activation energy of FER/DDM system was 41.6 kJ/mol and gel time was decreased with the curing temperature.
- Endo T, Development and Applications of New Reactive Monomers, CMC, Tokyo (1993)
- Charrier JM, Polymeric Materials and Processing: Plastics, Elastomers and Composites, Hanser Publishers, New York (1991)
- Wilks ES, Industrial Polymers Handbook: Products, Processes, Applications, Wiley-Vch, New York (2001)
-
Bongiovanni R, Malucelli G, Messori M, Pilati F, Priola A, Tonelli C, Toselli M, J. Appl. Polym. Sci., 75(5), 651 (2000)
- Stansbury JW, Antonucci JM, Dent. Mater., 15, 166 (1999)
- Hamciuc E, Hamciuc C, Sava I, Sava M, Bruma M, Macromol. Mater. Eng., 283, 36 (2000)
-
Gutch PK, Banerjee S, Gupta DC, Jaiswal DK, J. Polym. Sci. A: Polym. Chem., 39(3), 383 (2001)
- Saegusa Y, Sakai T, J. Polym. Sci. A: Polym. Chem., 38, 1873 (2000)
-
Saegusa Y, Horikiri M, Sakai D, Nakamura S, J. Polym. Sci. A: Polym. Chem., 36(3), 429 (1998)
-
Xie K, Zhang SY, Liu JG, He MH, Yang SY, J. Polym. Sci. A: Polym. Chem., 39(15), 2581 (2001)
-
Liu JG, He MH, Li ZX, Qian ZG, Wang FS, Yang SY, J. Polym. Sci. A: Polym. Chem., 40(10), 1572 (2002)
-
Bongiovanni R, Malucelli G, Pollicino A, Priola A, J. Appl. Polym. Sci., 63(8), 979 (1997)
-
Castelvetro V, di Mirabello LM, Aglietto M, Passaglia E, J. Polym. Sci. A: Polym. Chem., 39(1), 32 (2001)
- Ribeiro AA, Magn. Reson. Chem., 35, 215 (1997)
- Ozawa T, Bull. Chem. Soc. Jpn., 38, 1881 (1965)
- Winter HH, Polym. Eng. Sci., 27, 1698 (1987)
- Waters DN, Paddy JL, Anal. Chem., 60, 53 (1988)
-
Park SJ, Seo MK, Lee JR, J. Polym. Sci. A: Polym. Chem., 38(16), 2945 (2000)
-
Park SJ, Seo MK, Lee JR, Lee DR, J. Polym. Sci. A: Polym. Chem., 39(1), 187 (2001)
- Oyanguren PA, Williams RJ, J. Appl. Polym. Sci., 47, 1361 (1993)
- Takahama T, Geil PH, J. Polym. Sci., 20, 453 (1982)
-
Park SJ, Kim TJ, Lee JR, J. Polym. Sci. B: Polym. Phys., 38(16), 2114 (2000)