화학공학소재연구정보센터
Polymer(Korea), Vol.27, No.3, 176-182, May, 2003
불소함유 에폭시 수지의 합성, 경화 거동 및 유변학적 특성
Synthesis, Cure Behavior, and Rheological Properties of Fluorine-Containing Epoxy Resins
E-mail:
초록
피리딘을 촉매로 사용하여 2-chloro-α,α,α-trifluorotoluene과 glycerol diglycidyl ether를 반응시켜 불소함유 에폭시 수지인 2-trifluorotoluene diglycidylether (FER)을 합성하였다. FER/DDM 시스템의 경화 거동은 동적 DSC와 등온 DSC 열분석을 통하여 알아보았으며, Flynn-Wall-Ozawa식을 사용하여 경화 활성화 에너지 (Ea)를 계산하였다. 또한, 본 시스템의 유변학적 특성은 레오미터를 이용하여 등온 조건하에서 고찰하였으며, Arrhenius식을 사용하여 젤화 시간과 경화 온도에 의해 가교 활성화 에너지 (Ec)를 구하였다. 실험 결과, FT-IR, 13C NMR, 그리고 19F NMR 분광법 분석을 통하여 합성한 수지의 화학 구조를 확인하였으며, FER/DDM 시스템의 Ea는 53.4 kJ/mol이었으며, 경화 반응의 전환율과 전환 속도는 경화 온도가 높을수록 높은 값을 나타내었다. 시스템의 Ec는 41.6 kJ/mol이었으며, 경화 온도가 높을수록 젤화 시간이 단축되었다.
The fluorine-containing epoxy resin, 2-trifluorotoluene diglycidylether (FER) was prepared by reaction of 2-chloro-α,α,α-trifluorotoluene with glycerol diglycidylether in the presence of pyridine catalyst. Curing behavior of FER/DDM system was investigated using dynamic and isothermal DSC. Cure activation energy (Ea) was determined by Flynn-Wall-Ozawa’s equation. The rheological properties of FER/DDM system were studied under isothermal condition using a rheometer. Cross-linking activation energy (Ec) was determined from the Arrhenius equation based on gel time and curing temperature. As a result, the chemical structure of FER was confirmed by FT-IR, 13C NMR, and 19F NMR spectroscopy. The cure activation energy of FER/DDM system was 53.4 kJ/mol and conversion and conversion rate were increased with the curing temperature. The cross-linking activation energy of FER/DDM system was 41.6 kJ/mol and gel time was decreased with the curing temperature.
  1. Endo T, Development and Applications of New Reactive Monomers, CMC, Tokyo (1993)
  2. Charrier JM, Polymeric Materials and Processing: Plastics, Elastomers and Composites, Hanser Publishers, New York (1991)
  3. Wilks ES, Industrial Polymers Handbook: Products, Processes, Applications, Wiley-Vch, New York (2001)
  4. Bongiovanni R, Malucelli G, Messori M, Pilati F, Priola A, Tonelli C, Toselli M, J. Appl. Polym. Sci., 75(5), 651 (2000) 
  5. Stansbury JW, Antonucci JM, Dent. Mater., 15, 166 (1999) 
  6. Hamciuc E, Hamciuc C, Sava I, Sava M, Bruma M, Macromol. Mater. Eng., 283, 36 (2000) 
  7. Gutch PK, Banerjee S, Gupta DC, Jaiswal DK, J. Polym. Sci. A: Polym. Chem., 39(3), 383 (2001) 
  8. Saegusa Y, Sakai T, J. Polym. Sci. A: Polym. Chem., 38, 1873 (2000) 
  9. Saegusa Y, Horikiri M, Sakai D, Nakamura S, J. Polym. Sci. A: Polym. Chem., 36(3), 429 (1998) 
  10. Xie K, Zhang SY, Liu JG, He MH, Yang SY, J. Polym. Sci. A: Polym. Chem., 39(15), 2581 (2001) 
  11. Liu JG, He MH, Li ZX, Qian ZG, Wang FS, Yang SY, J. Polym. Sci. A: Polym. Chem., 40(10), 1572 (2002) 
  12. Bongiovanni R, Malucelli G, Pollicino A, Priola A, J. Appl. Polym. Sci., 63(8), 979 (1997) 
  13. Castelvetro V, di Mirabello LM, Aglietto M, Passaglia E, J. Polym. Sci. A: Polym. Chem., 39(1), 32 (2001) 
  14. Ribeiro AA, Magn. Reson. Chem., 35, 215 (1997) 
  15. Ozawa T, Bull. Chem. Soc. Jpn., 38, 1881 (1965) 
  16. Winter HH, Polym. Eng. Sci., 27, 1698 (1987) 
  17. Waters DN, Paddy JL, Anal. Chem., 60, 53 (1988) 
  18. Park SJ, Seo MK, Lee JR, J. Polym. Sci. A: Polym. Chem., 38(16), 2945 (2000) 
  19. Park SJ, Seo MK, Lee JR, Lee DR, J. Polym. Sci. A: Polym. Chem., 39(1), 187 (2001) 
  20. Oyanguren PA, Williams RJ, J. Appl. Polym. Sci., 47, 1361 (1993) 
  21. Takahama T, Geil PH, J. Polym. Sci., 20, 453 (1982)
  22. Park SJ, Kim TJ, Lee JR, J. Polym. Sci. B: Polym. Phys., 38(16), 2114 (2000)