Korean Chemical Engineering Research, Vol.43, No.1, 16-20, February, 2005
CO2 초임계 유체에서 열식법을 이용한 다공성 폴리프로필렌 막의 제조
Preparation of Porous Polypropylene Membrane by a Thermally Induced Phase Separation Method in Supercritical CO2
E-mail:
초록
CO2 초임계 유체에서 열식법을 이용하여 폴리프로필렌과 켐펜을 혼합하여 다공성 폴리프로필렌 막을 제조했다. 폴리프로필렌 농도 10 wt%의 조건에서 제조된 폴리프로필렌 막의 공극률은 메탄을, 에탄올, n-부탄올에 따라 각각 78, 80, 73%였다. 폴리프로필렌의 농도가 증가할수록 인장강도는 높아졌으며 폴리프로필렌 농도가 10 wt% 일 때 인장강도는 0.17 kgf/mm2였다. CO2 초임계 유체를 사용하여 켐펜을 추출한 결과 시간에 따라 추출속도가 증가하였으며 5분 경과 후 94% 제거되었다ㅏ. 온도가 증가함에 따라 추출속도가 증가했으며 45 ℃ 조건에서 99% 제거되었다. 그러나 그 이상의 높은 온도에서는 추출속도는 저하되었다. 150 bar의 압력까지는 압력이 증가함에 따라 켐펜의 추출속도는 증가하였으나, 그 이상의 압력 조건에서는 압력이 증가함에 따라 추출속도는 미소하게 감소했다. 추출속도는 CO2 초임계 유체의 켐펜에 대한 용해도 특성과 상관성이 있었다.
Porous polypropylene membranes were prepared by a thermally induced phase separation method in supercritical CO2, where polypropylene and Camphene were used as raw materials. The porosity of polypropylene membranes with 10 wt% polypropylene concentration was 78, 80, 73% by using methanol, ethanol, and n-buthanol as an analytical solvent, respectively. The tensile strength increased with an increasing polypropylene concentration, where it was 0.17 kgf/mm2 at 10 wt% polypropylene concentration. The extraction rate for Camphene increased with time and Camphene was removed 94% in 5 min. It increased with an increasing temperature and was 99% at 45 ℃, however, decreased with an increasing temperature at higher than 45 ℃. The extraction rate increased with an increasing pressue up to 150 bar, however, decreased slightly with an increasing pressure over 150 bar. The extraction rate had a relation with the solubility of Camphene in supercritical CO2.
Keywords:Porous Polypropylene Membrane;Camphene;Supercritical CO2;Thermal Induced Phase Separation Method
- Kang M, Chai H, Yang W, Appl. Chem., 6(1), 328 (2002)
- Park HB, Lee YM, J. Korean Ind. Eng. Chem., 13(1), 1-11 (2002)
- Lee SG, Lee JH, Choi KY, Rhee JM, Polym.(Korea), 22(2), 258 (1998)
- Bae B, Chun BH, Ha HY, Oh IH, Kim D, J. Membr. Sci., 202(1-2), 245 (2002)
- Yang MC, Perng JS, J. Membr. Sci., 187(1-2), 13 (2001)
- Matsuyama H, Yuasa M, Kitamura Y, Teramoto M, Lloyd DR, J. Membr. Sci., 179(1-2), 91 (2000)
- Evren V, J. Membr. Sci., 175(1), 97 (2000)
- Kim HJ, Kang YS, Kim JJ, Polym. Sci. Technol., 2(2), 81 (1991)
- Atkinson PM, Lloyd DR, J. Membr. Sci., 175(2), 225 (2000)
- Kim JR, Kyong JB, J. Korean Chem. Soc., 34(4), 325 (1990)
- Lee JS, Jeon BJ, Jung IH, Hong IK, J. Korean Ind. Eng. Chem., 6(2), 320 (1995)
- Matsuyama H, Yano H, Maki T, Teramoto M, Mishima K, Matsuyama K, J. Membr. Sci., 194(2), 157 (2001)
- Matsuyama H, Yamamoto A, Yano H, Maki T, Teramoto M, Mishima K, Matsuyama K, J. Membr. Sci., 204(1-2), 81 (2002)
- Lee SB, Kim HJ, Jung IH, Hong IK, Theor. Appl. Chem. Eng., 1(1), 912 (1995)
- Matsuyama H, Maki T, Teramoto M, Asano K, J. Membr. Sci., 204(1-2), 323 (2002)
- Lee SJ, Kim MS, Chung JG, J. Korean Ind. Eng. Chem., 14(8), 1058 (2003)
- Shi Q, Yu MX, Zhou X, Yan YS, Wan CR, J. Power Sources, 103(2), 286 (2002)
- Kim JR, Kim HK, Kyong JB, J. Korean. Chem. Soc., 32(4), 311 (1988)
- Sun YP, Supercritical Fluid Technology in Materials Science and Engineering, Marcel Dekker, Ind., New York, NY (2002)