Journal of Industrial and Engineering Chemistry, Vol.12, No.2, 241-247, March, 2006
Atom Transfer Radical Polymerization of 1,3-Butadiene Using Novel CuBr/Pyridine-2-Carboxamide Catalysts
E-mail:
Atom transfer radical polymerization (ATRP) is one of the most successful methods to polymerize syrenes, (meth)acrylater, and a variety of other monomers in a controlled fashion. Novel ligands, 4-alkylpyridine-2-carboxamides [R=methy] (4a),t-butyl (4b), H(4c)], have been prepared through the reaction of 4- alkyl-2-cyanopyridine with water in the presence of 0.4 mol% of base in ethanol solution. The livig free radical polymerization of 1,3-butadiene was facile in the presence of the CuBr/4a catalytic system. Several effects, such as those of the ligand, solvent, and temperature, and a kinetic study of the ATRP of 1,3-butadiene(BD), were studied systematically. The optimum conditions for the ATRP of BD were [CuBr]/[4a]/[PEBr]/[BD] = 1:2:1:100 at 80℃ in veratrole solution (w/w = 1:2); these conditions yielded well-defined polybutadiene (PBD) with a narrow molecular weight distribution (1.40).
Keywords:atom transfer radical polymerization (ATRP);controlled/"living" radical polymerization;pyridine-2-carboxamide;catalyst;1,3-butadiene (BD)
- Matyjaszewski K, Controlled Radical Polymerization, ACS Symposium Series 685, American Chemical Society, Washington, DC (1998)
- Matyjaszewski K, Controlled/Living Radical Polymerization: Progress in ATRP, NMP, and RAFT, ACS Symposium Series 768, American Chemical Society, Washington, DC (2000)
- Matyjaszewski K, Davis TP, Handbook of Radical Polymerization, Wiley-Interscience, Hoboken (2002)
- Patten TE, Xia JH, Abernathy T, Matyjaszewski K, Science, 272(5263), 866 (1996)
- Shim SE, Shin Y, Lee H, Jung H, Chang YH, Choe S, J. Ind. Eng. Chem., 9(6), 619 (2003)
- Thangadurai TD, Ihm SK, J. Ind. Eng. Chem., 9(5), 563 (2003)
- Thangadurai TD, Ihm SK, J. Ind. Eng. Chem., 9(5), 569 (2003)
- Kato M, Kamigaito M, Sawamoto M, Higashimura T, Macromolecules, 28(5), 1721 (1995)
- Wang JS, Matyjaszewski K, J. Am. Chem. Soc., 117(20), 5614 (1995)
- Lee DW, Seo EY, Cho SI, Yi CS, J. Polym. Sci. A: Polym. Chem., 42(11), 2747 (2004)
- Lee DW, J. Ind. Eng. Chem., 10(4), 592 (2004)
- Heo SU, Lee DW, J. Ind. Eng. Chem., 11(6), 911 (2005)
- Keller RN, Wycoff HD, Inorg. Synth., 2, 1 (1946)
- Matyjaszewski K, Patten TE, Xia JH, J. Am. Chem. Soc., 119(4), 674 (1997)
- Gordon AJ, Ford RA, Chemist's Companion, pp.445-447, John Wiley & Sons, New York (1972)
- Schaefer FC, Peters GA, J. Org. Chem., 26, 412 (1961)
- Robert TS, Paul LO, Jonathan WP, Paul DG, J. Org. Chem., 55, 2 (1990)
- Wade LG, Organic Chemistry, 5th Edn., pp. 971-972, John Wiley & Sons, New York (2004)
- Xia J, Zhang X, Matyjaszewski K, ASC Symposium Series 760, p. 207, American Chemical Society, Washington, DC (2000)
- Stevens MP, Polymer Chemistry: An Introduction, Oxford University Press, Oxford (1999)
- Patten TE, Matyjaszewski K, Adv. Mater., 10, 901 (1998)
- Matyjaszewski K, Davis K, Patten T, Wei M, Tetrahedron, 53, 15321 (1997)
- Wang XS, Luo N, Ying SK, Polymer, 40(14), 4157 (1999)
- Wang XS, Armes SP, Macromolecules, 33(18), 6640 (2000)
- Pascual S, Coutin B, Tardi M, Polton K, Vairon JP, Macromolecules, 32(5), 1432 (1999)
- Matyjaszewski K, Macromol. Symp., 134, 105 (1998)