Journal of Industrial and Engineering Chemistry, Vol.14, No.3, 371-376, May, 2008
Organic radical battery with PTMA cathode: Effect of PTMA content on electrochemical properties
E-mail:,
The nitroxide radical polymer, poly(2,216,6-tetramethylpiperidinyloxy-4-ylmethacrylate) (PTMA) is gaining increasing attention as a promising cathode-active material for high-rate capable, organic radical batteries (ORBs). This study evaluates the effect of varying PTMA content (20, 40 and 60 wt.%) on the cathode morphology and electrochemical properties of the ORB operating at room temperature with lithium metal anode and 1 M LiPF6 in ethylene carbonate (EC)/dimethyl carbonate (DMC) electrolyte. The cathodes with 20 and 40% of PTMA exhibited uniform particle morphology with a thin layer of polymer coating and these resulted in achieving 100% utilization of the active material (111 mAh/g specific capacity for the cell) at moderate Grates. The cathode with 60% of PTMA exhibited larger ohmic resistance and lower charge-discharge properties due to the thicker layer of insulating polymer. The maximum discharge capacities at very high C-rates of 30 and 50 C were realized from the 20% PTMA cathode that has the highest carbon content and hence the lowest ohmic resistance. The Li/PTMA cells exhibited good performance on long-term cycling at 1 C, irrespective of the PTMA content in the cathode. (C) 2008 The Korean Society of Industrial and Engineering Chemistry. Published by Elsevier B.V. All rights reserved.
- Murata H, Miyajima D, Nishide H, Macromolecules, 39(19), 6331 (2006)
- Fukuzaki E, Nishide H, J. Am. Chem. Soc., 128(3), 996 (2006)
- Griffith OH, Keana JFW, Rottschaefer S, Warlick TA, J. Am. Chem. Soc., 89, 5072 (1967)
- Dagonneau M, Ivanov VB, Rozantsev EG, Sholle VD, Kagan ES, J. Macromol. Sci., Rev. Macromol. Chem. Phys., C22, 169 (1982)
- Heo SU, Rhee GH, Lee DH, Kim JH, Choi DS, Lee DW, J. Ind. Eng. Chem., 12(2), 241 (2006)
- Anderson CD, Shea KJ, Rychnovsky SD, Org. Lett., 7, 4879 (2005)
- MacCorquodale F, Crayston JA, Walton JC, Worsfold DJ, Tetrahedron Lett., 31(5), 771 (1990)
- Nakahara K, Iwasa S, Satoh M, Morioka Y, Iriyama J, Suguro M, Hasegawa E, Chem. Phys. Lett., 359, 351 (2002)
- Nishide H, Iwasa S, Pu YJ, Suga T, Nakahara K, Satoh M, Electrochim. Acta, 50, 827 (2004)
- Nishide H, Suga T, Electrochem. Soc. Interf., 14, 4 (2005)
- Li HQ, Zou Y, Xia YY, Electrochim. Acta, 52(5), 2153 (2007)
- Nakahara K, Iriyama J, Iwasa S, Suguro M, Satoh M, Cairns EJ, J. Power Sources, 163(2), 1110 (2007)
- Nakahara K, Iriyama J, Iwasa S, Suguro M, Satoh M, Cairns EJ, J. Power Sources, 165(2), 870 (2007)
- Nakahara K, Iriyama J, Iwasa S, Suguro M, Satoh M, Cairns EJ, J. Power Sources, 165(1), 398 (2007)
- Suga T, Konishi H, Nishide H, Chem. Commun., 17, 1730 (2007)
- Kim JK, Cheruvally G, Choi JW, Ahn JH, Choi DS, Song CE, J. Electrochem. Soc., 154(9), A839 (2007)
- Kim JK, Cheruvally G, Choi JW, Ahn JH, Lee SH, Choi DS, Song CE, Solid State Ion., 178, 1546 (2007)
- Katsumata T, Satoh M, Wada J, Shiotsuki M, Sanda F, Masuda T, Macromol. Rapid Commun., 27(15), 1206 (2006)
- Aurich HG, in: S. Patai, Z. Rappoport (Eds.), Nitrones, Nitronates and Nitroxides, John Wiley & Sons, New York, 1989, p. 313
- Nakahara K, Iwasa S, Iriyama J, Morioka Y, Suguro M, Satoh M, Cairns EJ, Electrochim. Acta, 52(3), 921 (2006)
- Suga T, Pu YJ, Oyaizu K, Nishide H, Bull. Chem. Soc. Jpn., 77, 2203 (2004)