화학공학소재연구정보센터
Journal of Industrial and Engineering Chemistry, Vol.14, No.3, 371-376, May, 2008
Organic radical battery with PTMA cathode: Effect of PTMA content on electrochemical properties
E-mail:,
The nitroxide radical polymer, poly(2,216,6-tetramethylpiperidinyloxy-4-ylmethacrylate) (PTMA) is gaining increasing attention as a promising cathode-active material for high-rate capable, organic radical batteries (ORBs). This study evaluates the effect of varying PTMA content (20, 40 and 60 wt.%) on the cathode morphology and electrochemical properties of the ORB operating at room temperature with lithium metal anode and 1 M LiPF6 in ethylene carbonate (EC)/dimethyl carbonate (DMC) electrolyte. The cathodes with 20 and 40% of PTMA exhibited uniform particle morphology with a thin layer of polymer coating and these resulted in achieving 100% utilization of the active material (111 mAh/g specific capacity for the cell) at moderate Grates. The cathode with 60% of PTMA exhibited larger ohmic resistance and lower charge-discharge properties due to the thicker layer of insulating polymer. The maximum discharge capacities at very high C-rates of 30 and 50 C were realized from the 20% PTMA cathode that has the highest carbon content and hence the lowest ohmic resistance. The Li/PTMA cells exhibited good performance on long-term cycling at 1 C, irrespective of the PTMA content in the cathode. (C) 2008 The Korean Society of Industrial and Engineering Chemistry. Published by Elsevier B.V. All rights reserved.
  1. Murata H, Miyajima D, Nishide H, Macromolecules, 39(19), 6331 (2006)
  2. Fukuzaki E, Nishide H, J. Am. Chem. Soc., 128(3), 996 (2006)
  3. Griffith OH, Keana JFW, Rottschaefer S, Warlick TA, J. Am. Chem. Soc., 89, 5072 (1967)
  4. Dagonneau M, Ivanov VB, Rozantsev EG, Sholle VD, Kagan ES, J. Macromol. Sci., Rev. Macromol. Chem. Phys., C22, 169 (1982)
  5. Heo SU, Rhee GH, Lee DH, Kim JH, Choi DS, Lee DW, J. Ind. Eng. Chem., 12(2), 241 (2006)
  6. Anderson CD, Shea KJ, Rychnovsky SD, Org. Lett., 7, 4879 (2005)
  7. MacCorquodale F, Crayston JA, Walton JC, Worsfold DJ, Tetrahedron Lett., 31(5), 771 (1990)
  8. Nakahara K, Iwasa S, Satoh M, Morioka Y, Iriyama J, Suguro M, Hasegawa E, Chem. Phys. Lett., 359, 351 (2002)
  9. Nishide H, Iwasa S, Pu YJ, Suga T, Nakahara K, Satoh M, Electrochim. Acta, 50, 827 (2004)
  10. Nishide H, Suga T, Electrochem. Soc. Interf., 14, 4 (2005)
  11. Li HQ, Zou Y, Xia YY, Electrochim. Acta, 52(5), 2153 (2007)
  12. Nakahara K, Iriyama J, Iwasa S, Suguro M, Satoh M, Cairns EJ, J. Power Sources, 163(2), 1110 (2007)
  13. Nakahara K, Iriyama J, Iwasa S, Suguro M, Satoh M, Cairns EJ, J. Power Sources, 165(2), 870 (2007)
  14. Nakahara K, Iriyama J, Iwasa S, Suguro M, Satoh M, Cairns EJ, J. Power Sources, 165(1), 398 (2007)
  15. Suga T, Konishi H, Nishide H, Chem. Commun., 17, 1730 (2007)
  16. Kim JK, Cheruvally G, Choi JW, Ahn JH, Choi DS, Song CE, J. Electrochem. Soc., 154(9), A839 (2007)
  17. Kim JK, Cheruvally G, Choi JW, Ahn JH, Lee SH, Choi DS, Song CE, Solid State Ion., 178, 1546 (2007)
  18. Katsumata T, Satoh M, Wada J, Shiotsuki M, Sanda F, Masuda T, Macromol. Rapid Commun., 27(15), 1206 (2006)
  19. Aurich HG, in: S. Patai, Z. Rappoport (Eds.), Nitrones, Nitronates and Nitroxides, John Wiley & Sons, New York, 1989, p. 313
  20. Nakahara K, Iwasa S, Iriyama J, Morioka Y, Suguro M, Satoh M, Cairns EJ, Electrochim. Acta, 52(3), 921 (2006)
  21. Suga T, Pu YJ, Oyaizu K, Nishide H, Bull. Chem. Soc. Jpn., 77, 2203 (2004)