화학공학소재연구정보센터
Korean Journal of Chemical Engineering, Vol.27, No.3, 791-801, March, 2010
Thermogravimetric analysis of longan seed biomass with a two-parallel reactions model
E-mail:
The kinetic analysis of pyrolysis process of longan seed was performed in a thermogravimetric analyzer. All experimental runs were carried out by using an initial sample mass of 15 mg and final temperature of 650 ℃ under the inert atmosphere of nitrogen. Particle sizes in the range from 0.05-2.1 mm and the heating rates from 5-100 ℃/min were employed to investigate their effects on the thermogram and the kinetic parameters. The TG curves generally showed sigmoid shape and displayed one major peak in DTG curve. The main devolatilization of longan seed occurred over the temperature range of 210-330 ℃. It was found that heat transfer resistance in a particle could be reduced either by decreasing the size of particle or increasing the heating rate. The thermal decomposition of longan seed could be well described by the two-parallel reactions kinetic model. This analysis of reaction kinetic gave the values of activation energy for the decomposition of the two fractions in the model corresponding closely to those of hemicellulose and lignin.
  1. Kim SS, Agblevor FA, Lim JT, J. Ind. Eng. Chem., 15(2), 247 (2009)
  2. Park HJ, Park YK, Dong JI, Kim JS, Jeon JK, Kim SS, Kim J, Song B, Park J, Lee KJ, Fuel Process. Technol., 90(2), 186 (2009)
  3. Park HJ, Dong JI, Jeon JK, Park YK, Yoo KS, Kim SS, Kim J, Kim S, Chem. Eng. J., 143(1-3), 124 (2008)
  4. Park YH, Kim J, Kim SS, Park YK, Bioresour. Technol., 100, 400 (2009)
  5. Park HJ, Dong JI, Jeon JK, Yoo KS, Yim JS, Sohn JM, Park YK, J. Ind. Eng. Chem., 13(2), 182 (2007)
  6. Lee HI, Park HJ, Park YK, Hur JY, Jeon JK, Kim JM, Catal. Today, 132(1-4), 68 (2008)
  7. Park HJ, Jeon JK, Kim JM, Lee HI, Yim JH, Park J, Park YK, J. Nanosci. Nanotechnol., 8, 5439 (2008)
  8. Goyal HB, Seal D, Saxena RC, Renewable Sustainable Energy Rev., 12, 504 (2008)
  9. Kim S, Eom Y, Korean J. Chem. Eng., 23(3), 409 (2006)
  10. Baker RR, Thermochim. Acta, 23, 201 (1978)
  11. Conesa JA, Marcilla A, Caballero JA, Font R, J. Anal. Appl. Pyrol., 58-59, 617 (2001)
  12. Caballero JA, Conesa JA, Font R, Marcilla A, J. Anal. Appl Pyrol., 42, 159 (1997)
  13. Teng H, Lin HC, Ho JA, Ind. Eng. Chem. Res., 36, 3947 (1997)
  14. Guo J, Lua AC, Biomass Bioenerg., 20(3), 223 (2001)
  15. Font R, Marcilla A, Verdu E, Devesa J, J. Anal. Appl. Pyrol., 21, 249 (1991)
  16. Junpirom S, Do DD, Tangsathitkulchai C, Tangsathitkulchai M, Carbon, 43, 1936 (2005)
  17. Luangkiattikhun P, Tangsathitkulchai C, Tangsathitkulchai M, Bioresour. Technol., 99, 986 (2006)
  18. Gergova K, Petrov N, Eser S, Carbon, 32, 693 (1994)
  19. Fisher T, Hajaligol M, Waymack B, Kellogg D, J. Anal. Appl. Pyrol., 62, 331 (2002)
  20. Haykiri-Acma H, J. Anal. Appl. Pyrol., 75, 211 (2006)
  21. Gonzalez JF, Encinar JM, Canito JL, Sabio E, Chacon M, J. Anal. Appl. Pyrol., 67, 165 (2003)
  22. Tsamba AJ, Yang WH, Blasiak W, Fuel Process. Technol., 87(6), 523 (2006)
  23. Varhegyi G, Antal MJ, Jakab E, Szabo P, J. Anal. Appl. Pyrol., 42, 73 (1997)