화학공학소재연구정보센터
Polymer(Korea), Vol.35, No.6, 520-525, November, 2011
Eudragit으로 코팅된 초다공성 하이드로젤의 제조 및 pH 의존형 팽윤거동
Preparation of Eudragit Coated Superporous Hydrogels and Their pH Dependent Swelling Behavior
E-mail:
초록
초다공성 하이드로젤은 다공성 공극구조를 이용하여 기존 수화젤의 팽윤성을 획기적으로 향상시킨 것으로, 빠른 팽윤거동과 높은 흡수율로 다양한 의약용 응용분야에 유용한 재료이다. 본 연구에서는 장용 코팅제인 Eudragit 계열 고분자들을 사용하여 poly(acrylic acid-co-acrylamide)계 초다공성 하이드로젤을 코팅함으로써 pH 의존성 팽윤거동을 보이는 초다공성 하이드로젤을 제조하고자 하였다. 서로 다른 pH 영역에서 작용하는 Eudragit L100과 S100을 이용하여 딥 코팅에 의해 표면을 코팅한 후 SEM을 이용해 공극구조를 관찰하고 pH에 따른 초다공성 하이드로젤의 팽윤거동을 관찰하였다. Eudragit 계열 고분자들로 코팅된 하이드로젤은 낮은 pH 환경하에서는 팽윤이 억제되다가, 특정 pH 이상에서 팽윤성이 향상되는 pH 의존성 팽윤거동을 보였고, 이러한 pH 의존성은 사용한 장용 코팅제용 고분자들의 pH 특성에 의존하였다.
Superporous hydrogels (SPHs) with fast swelling and superabsorbent properties are useful materials in various biomedical fields, by improving the swelling properties of conventional hydrogels based on their unique porous structure. In this study, Eudragit polymers were used as coating materials to control the swelling properties of poly(acrylic acid-co-acrylamide) based SPHs by environmental pH. The SPHs were coated with Eudragit L100 and S100 that have different pH characteristics as enteric coating materials by a dip coating method, and their pH dependent swelling behaviors were observed in various pH environments. The swelling of SPHs was inhibited at a low pH range, but significantly enhanced above a characteristic pH of Eudragit polymers. This pH dependent swelling behavior of hydrogels could be modulated by the characteristics of the enteric coating polymers.
  1. Park K, Shalaby WSW, Park H, Biodegradable Hydrogels for Drug Delivery., Technomic Publishing Co., Lancaster (1993)
  2. Omidian H, Rocca JG, Park K, J. Control. Release., 102, 3 (2005)
  3. Chen J, Park H, Park K, J. Biomed. Mater. Res. Part A., 44, 53 (1999)
  4. Gemeinhart RA, Park H, Park K, Polym. Adv. Technol., 11, 617 (2000)
  5. Dorkoosh FA, Brussee J, Verhoef JC, Borchard G, Rafiee-Tehrani M, Junginger HE, Polymer, 41(23), 8213 (2000)
  6. Huh KM, Baek N, Park K, J. Bioact. Compat. Polym., 20, 231 (2005)
  7. Park K, Drug Delivery Technology., 2, 9 (2002)
  8. Chen J, Park K, J. Control. Release., 65, 73 (2000)
  9. Chen J, Blevins WE, Park H, Park K, J. Control. Release., 64, 39 (2000)
  10. Martin BD, Linhardt RJ, Dordick JS, Biomaterials., 19, 69 (1998)
  11. Gemeinhart RA, Chen J, Park H, Park K, J. Biomater. Sci. Polym. Ed., 11, 1371 (2000)
  12. Marsano E, Bianchi E, Viscardi A, Polymer, 45(1), 157 (2004)
  13. Yin LC, Zhao ZM, Hu YZ, Ding JY, Cui FY, Tang C, Yin CH, J. Appl. Polym. Sci., 108(2), 1238 (2008)
  14. Chaterji S, Kwon IK, Park K, Prog. Polym. Sci., 32, 1083 (2007)
  15. Lysaght MJ, O`’Loughlin JA, ASAIO J., 46, 515 (2000)
  16. Khang G, Lee HB, Cell-Synthetic Surface Interaction;Physicochemical Surface Modification, Academic Press, New York, 771 (2001)
  17. McGinity JW, Aqueous Polymeric Coatings for Pharmaceutical Dosage Forms, Marcel Dekker, New York (1989)
  18. Banker GS, Rhodes CT, Modern Pharmaceutics, Marcel Dekker, New York (1996)
  19. Bodmeier R, Paeratakul O, Pharm. Res., 6, 725 (1989)
  20. Goodman H, Banker GS, J. Pharm. Sci., 59, 1131 (1970)
  21. Han K, Shin DS, Jee UK, Chung YB, J. Kor.Pharm. Sci., 22, 267 (1992)
  22. Yuk KY, Choi YM, Park JS, Kim SY, Park K, Huh KM, Polym.(Korea), 33(5), 469 (2009)