화학공학소재연구정보센터
Applied Chemistry for Engineering, Vol.23, No.3, 320-325, June, 2012
고체산 촉매를 이용한 폐윤활유의 촉매 분해
Catalytic Cracking of Waste Lubricant Oil over Solid Acid Catalysts
E-mail:
초록
SiO2/Al2O3 비가 10.5인 실리카-알루미나(SA), 10인 수소형 모더나이트(HM), 12.5인 탈알루미늄 모더나이트(DM) 등을 이용하여 폐윤활유의 촉매분해를 수행하였다. 촉매의 분해능은 SA > DM > HM 시료 순으로 높았다. SA 시료 상에서 얻어진 분해오일은 휘발유의 탄소수 분포와 가까웠고 반면 DM 시료의 경우에는 경유의 탄소수 분포와 가까웠다. HM 시료 상에서 얻어진 분해오일의 탄소수 분포는 휘발유와 경유의 중간 정도였다. 산량은 SA ∼ HM > DM 시료 순으로 많았다. 10 Å 이하의 균일 세공을 가지는 HM과 DM 시료와는 달리, SA 시료의 세공은 10∼50 A 범위의 분포를 나타내었다. 이러한 결과들은 촉매의 산량과 세공 크기가 분해오일의 탄소수 분포와 관계가 있음을 보여준다. 촉매 표면에 탄소 및 불순물의 침적에 의한 표면적 감소는 SA > HM > DM 시료 순으로 컸다.
The catalytic cracking of waste lubricant oil was carried out on silica-alumina (SA), hydrogen-type mordenite (HM), and dealuminated mordenite (DM) with the silica/alumina ratio of 10.5, 10, and 12.5, respectively. Activity in the catalytic cracking was found to be in the order of SA > DM > HM. Carbon number distribution of the oil obtained over SA was similar to that of gasoline while that of the oil obtained over DM was similar to that of diesel. Carbon number distribution of the oil obtained over HM was similar to that between gasoline and diesel. Acid amounts of three kinds of catalysts were found to be in the order of SA ∼ HM > DM. Unlike HM and DM with pores of an uniform diameter below 10 A, SA had a pore size distribution within the range of 10 to 50Å. These results indicate that the acid amount and pore size of the catalysts may be related to the carbon number distribution of the cracked oil. The decrement of surface area by the accumulation of carbon and impurities on the surface of the catalyst was found to be in the order of SA > DM > HM.
  1. Brinkman DW, Lubric. Eng., 43, 324 (1987)
  2. Kim KM, Kim YS, Jeong SU, Kim SH, HWAHAK KONGHAK, 41(1), 122 (2003)
  3. Kim SS, J. Korean Ind. Eng. Chem., 18(5), 511 (2007)
  4. Bae HK, Seo JT, HWAHAK KONGHAK, 34(1), 123 (1996)
  5. Kim SS, Chun BH, Park CJ, Kim SH, J. of KSEE., 22, 1063 (2000)
  6. Lee KH, Lee YW, Ha BH, Journal of Catalysis., 178, 328 (1988)
  7. Lee CY, Kim HR, Choi KY, J. Korea Society of Waste Management., 19, 715 (2002)
  8. Kaminsky W, Rossler H, Chemtech., Feb., 108 (1992)
  9. Songip AR, Masuda T, Kuwahara H, Hashimoto K, Energy Fuels, 8(1), 136 (1994)
  10. Kim KJ, Cho DS, Yoon JH, Won YM, J. Korea Society of Waste Management., 12, 279 (1995)
  11. Bae JH, Chem. Ind. Technol., 12(1), 30 (1994)
  12. Satterfield CN, Heterogeneous Catalysis in Practice, 151, McGraw-Hill, New York (1980)
  13. Tanabe K, Solid Acids and Bases, 5, Academic Press, New York (1970)
  14. Lonyi F, Valyon J, Microporous and Mesoporous Materials., 47, 293 (2001)
  15. Csicsery SM, Journal of Catalysis., 19, 394 (1970)
  16. Lee YS, Ph. D. Dissertation, Hanyang University, Seoul, Korea (1986)