화학공학소재연구정보센터
Applied Chemistry for Engineering, Vol.25, No.6, 613-618, December, 2014
암모니아수 처리된 그래핀 옥사이드의 전자파 차폐효율 특성
Electromagnetic Interference Shielding Efficiency Characteristics of Ammonia-treated Graphene Oxide
E-mail:
초록
본 연구에서는 그래핀 옥사이드의 전기적 특성을 향상시키고자 그래핀 옥사이드에 암모니아수 처리를 이용하여 아민화가 이루어진 그래핀 옥사이드를 제조하였다. 그리고, 아민화된 그래핀 옥사이드의 전기적 특성을 평가하고자 이를 필름으로 제조하여 전자파차폐효율을 측정하였다. 암모니아수 처리 농도가 증가함에 따라 그래핀 옥사이드 표면의 질소 관능기가 증가함을 XPS에 의하여 확인하였으며, 또한, 전자파차폐효율 측정 결과 암모니아수 처리된 그래핀 옥사이드의 전자파차폐효율 특성이 우수함을 확인하였다. 21% 암모니아수 농도로 처리한 그래핀 옥사이드는 2950 MHz 이상에서 -5 dB 이상의 전자파차폐효율을 보여주었으며, 이러한 실험 결과들은 질소 관능기가 그래핀 옥사이드 내에 전자전달을 용이하게 하여 흡수되는 전자파 양을 증가시켰기 때문으로 사료된다.
In this study, nitrogen doped graphene oxide (GO) was prepared using liquid phase ammonia treatment to improve its electrical properties. Also, the aminated GO was manufactured into a film format and the electromagnetic interference (EMI) shielding efficiency was measured to evaluate its electrical properties. The XPS result showed that the increase of liquid phase ammonia treatment concentration led to the increased nitrogen functional group on the GO surface. The measurement of EMI shielding efficiency reveals that EMI shielding efficiency of the liquid phase ammonia treated GO was better than that of non-treated GO. When GO was treated using the ammonia solution of 21% concentration, the EMI shielding efficiency increased by -5 dB at higher than 2950 MHz. These results were maybe due to the fact that nitrogen functional groups on GO help to improve the absorbance of electromagnetic waves via facile electron transfer.
  1. Lee JI, Jung HT, Korean Chem. Eng. Res., 46(1), 7 (2008)
  2. Kim DY, Yun KJ, Lee YS, Appl. Chem. Eng., 25(3), 268 (2014)
  3. He H, Klinowski J, Foster M, Lerf A, Chem. Phys. Lett., 287, 53 (1998)
  4. Stankovich S, Dikin DA, Piner RD, Kohlhaas KA, Kleinhammes A, Jia Y, Wu Y, Nguyen ST, Ruoff RS, Carbon, 45, 1558 (2007)
  5. Yang JT, Wu MJ, Chen F, Fei ZD, Zhong MQ, J. Supercrit. Fluids, 56(2), 201 (2011)
  6. Park S, Prospectives of industrial chemistry, 16, 1 (2013)
  7. Kim Y, Cho S, Park SK, Jeon JD, Lee YS, Appl. Chem. Eng., 25(3), 292 (2014)
  8. Yang G, Chen HL, Qin HD, Feng YJ, Appl. Surf. Sci., 293, 299 (2014)
  9. Byrne TM, Gu X, Hou P, Cannon FS, Brown NR, Nieto-Delgado C, Carbon, 73, 1 (2014)
  10. Luo Z, Lim S, Tian Z, Shang J, Lai L, MacDonald B, Fu C, Shen Z, Yu T, Lin J, J. Mater. Chem., 21, 8038 (2011)
  11. Kim JH, Cho S, Bae TS, Lee YS, Sens. Actuators B, 197, 20 (2014)
  12. Lim JW, Jeong E, Jung MJ, Lee SI, Lee YS, Appl. Chem. Eng., 22(4), 405 (2011)
  13. Stohr B, Boehm HP, Schlogl R, Carbon, 29, 707 (1991)
  14. Boehm HP, Mair G, Stoehr T, De Rincon AR, Tereczki B, Fuel, 63, 1061 (1984)
  15. Chook SW, Chia CH, Zakaria S, Ayob MK, Chee KL, Huang NM, Neoh HM, Lim HN, Jamal R, Rahman R, Nanoscale Res. Lett., 7, 541 (2012)
  16. Ferrari AC, Solid State Commun., 143, 47 (2007)
  17. Zhang H, Kuila T, Kim NH, Yu DS, Lee JH, Carbon, 69, 66 (2014)
  18. Ferrari AC, Meyer JC, Scardaci V, Casiraghi C, Lazzeri M, Mauri F, Piscanec S, Jiang D, Novoselov KS, Roth S, Geim AK, Phys. Rev. Lett., 97, 187401 (2006)
  19. Saikia BK, Boruah RK, Gogoi PK, J. Chem. Sci., 121, 103 (2009)
  20. Takagi H, Maruyama K, Yoshizawa N, Yamada Y, Sato Y, Fuel, 83, 2427 (2007)
  21. Jeong E, Jung MJ, Lee YS, J. Fluorine Chem., 150, 98 (2013)
  22. Popov C, Plass MF, Bergmaier A, Kulisch W, Appl. Phys. A, 69, 241 (1999)
  23. Bai BC, Cho S, Yu HR, Yi KB, Kim KD, Lee YS, J. Ind. Eng. Chem., 19(3), 776 (2013)
  24. Matter PH, Zhang L, Ozkan US, J. Catal., 239(1), 83 (2006)
  25. Arrigo R, Havecker M, Schlogl R, Su DS, Chem. Commun., 40, 4891 (2008)
  26. Pels JR, Kapteijn F, Moulijn JA, Zhu Q, Thomas KM, Carbon, 33, 1641 (1995)
  27. Seredych M, Jurcakova DH, Lu GO, Bandosz TJ, Carbon, 46, 1475 (2008)
  28. Lim JW, Jeong E, Jung MJ, Lee SI, Lee YS, J. Ind. Eng. Chem., 18(1), 116 (2012)
  29. Shao YY, Wang XQ, Engelhard M, Wang CM, Dai S, Liu J, Yang ZG, Lin YH, J. Power Sources, 195(13), 4375 (2010)