화학공학소재연구정보센터
Journal of Industrial and Engineering Chemistry, Vol.82, 374-382, February, 2020
Ag-deposited Ti gas diffusion electrode in proton exchange membrane CO2 electrolyzer for CO production
E-mail:, ,
Electrochemical CO2-to-CO conversion is techno-economically effective for utilizing CO2. Although numerous studies are available on CO2 conversion catalysts, many of them are limited to a half-cell or conventional H-type apparatus in aqueous mediums, providing insufficient CO2 feeding. In this study, as a part of pioneering works on gas-feeding reactors, a gas diffusion electrode consisting of a Ti substrate with affixed Ag electrocatalysts was suggested; this enables the mass conversion of CO2 via direct feeding of CO2. Herein, Ag catalysts were electrodeposited on a Ti gas diffusion layer for a proton exchange membrane-based CO2 electrolyzer. Pre-treatment of the Ti crucially influenced the deposition profile, adhesiveness, morphology, and electrochemical surface area of the Ag deposit, which influence the CO2/CO conversion efficiency of the catalyst. Pre-treatment with HCl-H2SO4 conferred the highest roughness and hydrophilicity to the Ti substrate, leading to the highest surface area of the Ag catalyst and a consequent substantial increase in the CO2/CO conversion efficiency (45% at Vcell = -2.2 V), which is a 5.7-fold increase when compared with the un-treated counterpart. The fabrication of Ag/Ti gas diffusion electrode via simple Ag electrodeposition and optimized Ti pre-treatments reported herein provides a guide for manufacturing proton exchange membrane-based CO2 electrolyzers.
  1. Mark Lynas, Six Degrees: Our Future on a Hotter Planet, Fourth Estate, USA, 2007.
  2. Centi G, Quadrelli EA, Perathoner S, Energy Environ. Sci., 6, 1711 (2013)
  3. Asadi M, Kumar B, Behranginia A, Rosen BA, Baskin A, Repnin N, Pisasale D, Phillips P, Zhu W, Haasch R, Klie RF, Kral P, Abiade J, Salehi-Khojin A, Nat. Commun., 5, 4470 (2014)
  4. Choi J, Kim MJ, Ahn SH, Choi I, Jang JH, Ham YS, Kim JJ, Kim SK, Chem. Eng. J., 299, 37 (2016)
  5. Manthiram K, Beberwyck BJ, Aivisatos AP, J. Am. Chem. Soc., 136(38), 13319 (2014)
  6. Sen S, Liu D, Palmore GTR, ACS Catal., 4, 3091 (2014)
  7. Kim YE, Lww WH, Youn MH, Jeong SK, Kim HJ, Park JC, Park KT, J. Ind. Eng. Chem., 78, 73 (2019)
  8. Lu Q, Jiao F, Nano Energy., 29, 439 (2016)
  9. Zhang YQ, Jacobs G, Sparks DE, Dry ME, Davis BH, Catal. Today, 71(3-4), 411 (2002)
  10. Liu Z, Masel RI, Chem Q, Kutz R, Yang H, Lewinski K, Kaplun M, Luopa S, Lutz DR, J. CO2 Util., 15, 50 (2016)
  11. Back S, Yeom MS, Jung Y, ACS Catal., 5, 5089 (2015)
  12. Kim C, Jeon HS, Eom T, Jee MS, Kim H, Friend CM, Min BK, Hwang YJ, J. Am. Chem. Soc., 137(43), 13844 (2015)
  13. Gattrell M, Gupta N, Co A, J. Electroanal. Chem., 594(1), 1 (2006)
  14. Hori Y, Murata A, Tsukamoto T, Wakebe H, Koga O, Yamazaki H, Electrochimica Acta., 9, 2495 (1994)
  15. Zhu WL, Michalsky R, Metin O, Lv HF, Guo SJ, Wright CJ, Sun XL, Peterson AA, Sun SH, J. Am. Chem. Soc., 135(45), 16833 (2013)
  16. Luc W, Collins C, Wang SW, Xin HL, He K, Kang YJ, Jiao F, J. Am. Chem. Soc., 139(5), 1885 (2017)
  17. Chen YH, Kanan MW, J. Am. Chem. Soc., 134(4), 1986 (2012)
  18. Rosen J, Hutchings GS, Lu Q, Forest RV, Moore A, Jiao F, ACS Catal., 5, 4586 (2015)
  19. Li CW, Kanan MW, J. Am. Chem. Soc., 134(17), 7231 (2012)
  20. Lee HJ, Kim SK, Ahn SH, J. Ind. Eng. Chem., 54, 218 (2017)
  21. Kim HK, Lee HJ, Lim TH, Ahn SH, J. Ind. Eng. Chem., 66, 248 (2018)
  22. Verma S, Hamasaki Y, Kim C, Huang W, Lu S, Jhong HRM, Gewirth AA, Fujigaya T, Nakashima N, Kenis PJ, ACS Energy Lett., 3, 193 (2017)
  23. Jayashree RS, Yoon SK, Brushett FR, Lopez-Montesinos PO, Natarajan D, Markoski LJ, Kenis PJA, J. Power Sources, 195(11), 3569 (2010)
  24. Whipple DT, Finke EC, Kenis PJ, Solid-State Lett., 13, B109 (2010)
  25. Weekes DW, Salvatore DA, Reyes A, Huang A, Berlinguette CP, Accounts Chem. Res., 51, 910 (2018)
  26. Delacourt C, Ridgway PL, Kerr JB, Newman J, J. Electrochem. Soc., 155(1), B42 (2008)
  27. Wu JJ, Risalvato FG, Sharma PP, Pellechia PJ, Ke FS, Zhou XD, J. Electrochem. Soc., 160(9), F953 (2013)
  28. Dufek EJ, Lister TE, Stone SG, McIlwain ME, J. Electrochem. Soc., 159(9), F514 (2012)
  29. Gutierrez-Guerra N, Moreno-Lopez L, Serrano-Ruiz JC, Valverde JL, de Lucas-Consuegra A, Appl. Catal. B: Environ., 188, 272 (2016)
  30. Aeshala LM, Uppaluri R, Verma A, Phys. Chem. Chem. Phys., 16, 17588 (2014)
  31. Kutz RB, Chen Q, Yang H, Sajjad SD, Liu Z, Masel IR, Energy Technol., 5, 929 (2017)
  32. Vermaas DA, Smith WA, ACS Energy Lett., 1, 1143 (2016)
  33. Zhou X, Liu R, Sun K, Chen Y, Verlage E, Francis SA, Lewis NS, Xiang C, ACS Energy Lett., 1, 764 (2016)
  34. Li YC, Zhou D, Yan Z, Goncalves RH, Salvatore DA, Berlinguette CP, Mallouk TE, ACS Energy Lett., 1, 1149 (2016)
  35. Ham YS, Park YS, Jo A, Jang JH, Kim SK, Kim JJ, J. Power Sources, 437, 226898 (2019)
  36. Ma L, Fan S, Zhen DX, Wu XM, Liu SS, Lin JJ, Huang SQ, Chen W, He GH, Ind. Eng. Chem. Res., 56(37), 10242 (2017)
  37. Sebastian D, Palella A, Baglio V, Spadaro L, Siracusano S, Negro P, Niccoli F, Arico AS, Electrochimica Acta., 241, 28 (2017)
  38. Gok S, Kim Y, Lim T, Kim HJ, Kwon OJ, Electrocatalysis., 9, 59 (2018)
  39. Machunda RL, Ju H, Lee J, Curr. Appl. Phys., 11(4), 986 (2011)
  40. Ruengkit C, Tantavichet N, Thin Solid Films., 636, 116 (2017)
  41. Choi SY, Jeong SK, Kim HJ, Baek IH, Park T, ACS Sustain. Chem. Eng., 4, 1311 (2016)
  42. Kim Y, Lee H, Lim T, Kim HJ, Kwon OJ, J. Power Sources, 364, 16 (2017)
  43. Carmo M, Fritz DL, Merge J, Stolten D, Int. J. Hydrog. Energy, 38(12), 4901 (2013)
  44. Xiang C, Papadantonakis KM, Lewis NS, Mater. Horiz., 3, 169 (2016)
  45. Hsieh YC, Senanayake SD, Zhang Y, Xu W, Polyansky DE, ACS Catal., 5, 5349 (2015)
  46. Liu SB, Tao HB, Zeng L, Liu Q, Xu ZG, Liu QX, Luo JL, J. Am. Chem. Soc., 139(6), 2160 (2017)
  47. Ham YS, Choe S, Kim MJ, Lim T, Kim SK, Kim JJ, Appl. Catal. B: Environ., 208, 35 (2017)
  48. Park H, Choi J, Kim H, Hwang E, Ha DH, Ahn SH, Kim SK, Appl. Catal. B: Environ., 219, 123 (2017)
  49. Kim H, Hwang E, Park H, Lee BS, Jang JH, Kim HJ, Ahn SH, Kim SK, Appl. Catal. B: Environ., 206, 608 (2017)
  50. Kim H, Choe S, Park H, Jang JH, Ahn SH, Kim SK, Nanoscale., 9, 19045 (2017)
  51. Kim H, Park H, Kim DK, Choi I, Kim SK, J. Alloy. Compd., 785, 296 (2019)
  52. Kim H, Park H, Kim DK, Oh S, Choi I, Kim SK, ACS Sustainable Chem. Eng., 7(9), 8265 (2019)
  53. Choi I, Kim HY, Ahn SH, Hwang SJ, Yoo SJ, Kim H, Choi J, Park H, Jang JH, Kim SK, J. Nanosci. Nanotechno., 16(10), 10470 (2016)
  54. Zhao MJ, Cai C, Wang L, Zhang Z, Zhang JQ, Surf. Coat. Technol., 205, 2160 (2010)
  55. Kim JJ, Kim SK, Appl. Surf. Sci., 183(3-4), 311 (2001)
  56. Eliaz N, Shmueli S, Shur I, Benayahu D, Aronov D, Rosenman G, Acta Biomater., 5, 3178 (2009)
  57. Takacs D, Sziraki L, Torok TI, Solyom J, Gacsi Z, Gal-Solymos K, Surf. Coat. Technol., 201, 4526 (2007)
  58. Suntola T, Appl. Surf. Sci., 100-101, 391 (1996)
  59. Park H, Kim H, Hwang E, Ahn SH, Kim SK, J. Nanosci. Nanotechnol., 17, 7843 (2017)
  60. Yuan X, Kang Y, Zuo J, Xie Y, Ma L, Ren X, Bian Z, Wei Q, Zhou K, Wang X, Yu Z, PLoS One, e19636 (2018)
  61. Hung KY, Lin YC, Feng HP, Materials, 10, 1164 (2017)
  62. Becerra JG, Salvarezza RG, Arvia AJ, Electrochimica Acta., 33, 1431 (1988)
  63. Lu Q, Rosen J, Zhou Y, Hutchings GS, Kimmel YC, Chen JG, Jiao F, Nat Commun., 5, 3242 (2014)
  64. Rosen J, Hutchings GS, Lu Q, Rivera S, Zhou Y, Vlachos DG, Jiao F, ACS Catal., 5, 4293 (2015)
  65. Quere D, Annu. Rev. Mater. Res., 38, 71 (2008)
  66. Hitchcock SJ, Carroll NT, Nicholas MG, J. Mater. Sci., 16, 714 (1981)
  67. Wenzel RN, Ind. Eng. Chem., 28, 988 (1936)
  68. Hoshi N, Kato M, Hori Y, J. Electronal. Chem., 440, 283 (1997)