Journal of Industrial and Engineering Chemistry, Vol.82, 374-382, February, 2020
Ag-deposited Ti gas diffusion electrode in proton exchange membrane CO2 electrolyzer for CO production
E-mail:, ,
Electrochemical CO2-to-CO conversion is techno-economically effective for utilizing CO2. Although numerous studies are available on CO2 conversion catalysts, many of them are limited to a half-cell or conventional H-type apparatus in aqueous mediums, providing insufficient CO2 feeding. In this study, as a part of pioneering works on gas-feeding reactors, a gas diffusion electrode consisting of a Ti substrate with affixed Ag electrocatalysts was suggested; this enables the mass conversion of CO2 via direct feeding of CO2. Herein, Ag catalysts were electrodeposited on a Ti gas diffusion layer for a proton exchange membrane-based CO2 electrolyzer. Pre-treatment of the Ti crucially influenced the deposition profile, adhesiveness, morphology, and electrochemical surface area of the Ag deposit, which influence the CO2/CO conversion efficiency of the catalyst. Pre-treatment with HCl-H2SO4 conferred the highest roughness and hydrophilicity to the Ti substrate, leading to the highest surface area of the Ag catalyst and a consequent substantial increase in the CO2/CO conversion efficiency (45% at Vcell = -2.2 V), which is a 5.7-fold increase when compared with the un-treated counterpart. The fabrication of Ag/Ti gas diffusion electrode via simple Ag electrodeposition and optimized Ti pre-treatments reported herein provides a guide for manufacturing proton exchange membrane-based CO2 electrolyzers.
Keywords:Carbon dioxide;Electrochemical reduction;Silver;Titanium;Gas diffusion electrode;Membrane electrolyzer
- Mark Lynas, Six Degrees: Our Future on a Hotter Planet, Fourth Estate, USA, 2007.
- Centi G, Quadrelli EA, Perathoner S, Energy Environ. Sci., 6, 1711 (2013)
- Asadi M, Kumar B, Behranginia A, Rosen BA, Baskin A, Repnin N, Pisasale D, Phillips P, Zhu W, Haasch R, Klie RF, Kral P, Abiade J, Salehi-Khojin A, Nat. Commun., 5, 4470 (2014)
- Choi J, Kim MJ, Ahn SH, Choi I, Jang JH, Ham YS, Kim JJ, Kim SK, Chem. Eng. J., 299, 37 (2016)
- Manthiram K, Beberwyck BJ, Aivisatos AP, J. Am. Chem. Soc., 136(38), 13319 (2014)
- Sen S, Liu D, Palmore GTR, ACS Catal., 4, 3091 (2014)
- Kim YE, Lww WH, Youn MH, Jeong SK, Kim HJ, Park JC, Park KT, J. Ind. Eng. Chem., 78, 73 (2019)
- Lu Q, Jiao F, Nano Energy., 29, 439 (2016)
- Zhang YQ, Jacobs G, Sparks DE, Dry ME, Davis BH, Catal. Today, 71(3-4), 411 (2002)
- Liu Z, Masel RI, Chem Q, Kutz R, Yang H, Lewinski K, Kaplun M, Luopa S, Lutz DR, J. CO2 Util., 15, 50 (2016)
- Back S, Yeom MS, Jung Y, ACS Catal., 5, 5089 (2015)
- Kim C, Jeon HS, Eom T, Jee MS, Kim H, Friend CM, Min BK, Hwang YJ, J. Am. Chem. Soc., 137(43), 13844 (2015)
- Gattrell M, Gupta N, Co A, J. Electroanal. Chem., 594(1), 1 (2006)
- Hori Y, Murata A, Tsukamoto T, Wakebe H, Koga O, Yamazaki H, Electrochimica Acta., 9, 2495 (1994)
- Zhu WL, Michalsky R, Metin O, Lv HF, Guo SJ, Wright CJ, Sun XL, Peterson AA, Sun SH, J. Am. Chem. Soc., 135(45), 16833 (2013)
- Luc W, Collins C, Wang SW, Xin HL, He K, Kang YJ, Jiao F, J. Am. Chem. Soc., 139(5), 1885 (2017)
- Chen YH, Kanan MW, J. Am. Chem. Soc., 134(4), 1986 (2012)
- Rosen J, Hutchings GS, Lu Q, Forest RV, Moore A, Jiao F, ACS Catal., 5, 4586 (2015)
- Li CW, Kanan MW, J. Am. Chem. Soc., 134(17), 7231 (2012)
- Lee HJ, Kim SK, Ahn SH, J. Ind. Eng. Chem., 54, 218 (2017)
- Kim HK, Lee HJ, Lim TH, Ahn SH, J. Ind. Eng. Chem., 66, 248 (2018)
- Verma S, Hamasaki Y, Kim C, Huang W, Lu S, Jhong HRM, Gewirth AA, Fujigaya T, Nakashima N, Kenis PJ, ACS Energy Lett., 3, 193 (2017)
- Jayashree RS, Yoon SK, Brushett FR, Lopez-Montesinos PO, Natarajan D, Markoski LJ, Kenis PJA, J. Power Sources, 195(11), 3569 (2010)
- Whipple DT, Finke EC, Kenis PJ, Solid-State Lett., 13, B109 (2010)
- Weekes DW, Salvatore DA, Reyes A, Huang A, Berlinguette CP, Accounts Chem. Res., 51, 910 (2018)
- Delacourt C, Ridgway PL, Kerr JB, Newman J, J. Electrochem. Soc., 155(1), B42 (2008)
- Wu JJ, Risalvato FG, Sharma PP, Pellechia PJ, Ke FS, Zhou XD, J. Electrochem. Soc., 160(9), F953 (2013)
- Dufek EJ, Lister TE, Stone SG, McIlwain ME, J. Electrochem. Soc., 159(9), F514 (2012)
- Gutierrez-Guerra N, Moreno-Lopez L, Serrano-Ruiz JC, Valverde JL, de Lucas-Consuegra A, Appl. Catal. B: Environ., 188, 272 (2016)
- Aeshala LM, Uppaluri R, Verma A, Phys. Chem. Chem. Phys., 16, 17588 (2014)
- Kutz RB, Chen Q, Yang H, Sajjad SD, Liu Z, Masel IR, Energy Technol., 5, 929 (2017)
- Vermaas DA, Smith WA, ACS Energy Lett., 1, 1143 (2016)
- Zhou X, Liu R, Sun K, Chen Y, Verlage E, Francis SA, Lewis NS, Xiang C, ACS Energy Lett., 1, 764 (2016)
- Li YC, Zhou D, Yan Z, Goncalves RH, Salvatore DA, Berlinguette CP, Mallouk TE, ACS Energy Lett., 1, 1149 (2016)
- Ham YS, Park YS, Jo A, Jang JH, Kim SK, Kim JJ, J. Power Sources, 437, 226898 (2019)
- Ma L, Fan S, Zhen DX, Wu XM, Liu SS, Lin JJ, Huang SQ, Chen W, He GH, Ind. Eng. Chem. Res., 56(37), 10242 (2017)
- Sebastian D, Palella A, Baglio V, Spadaro L, Siracusano S, Negro P, Niccoli F, Arico AS, Electrochimica Acta., 241, 28 (2017)
- Gok S, Kim Y, Lim T, Kim HJ, Kwon OJ, Electrocatalysis., 9, 59 (2018)
- Machunda RL, Ju H, Lee J, Curr. Appl. Phys., 11(4), 986 (2011)
- Ruengkit C, Tantavichet N, Thin Solid Films., 636, 116 (2017)
- Choi SY, Jeong SK, Kim HJ, Baek IH, Park T, ACS Sustain. Chem. Eng., 4, 1311 (2016)
- Kim Y, Lee H, Lim T, Kim HJ, Kwon OJ, J. Power Sources, 364, 16 (2017)
- Carmo M, Fritz DL, Merge J, Stolten D, Int. J. Hydrog. Energy, 38(12), 4901 (2013)
- Xiang C, Papadantonakis KM, Lewis NS, Mater. Horiz., 3, 169 (2016)
- Hsieh YC, Senanayake SD, Zhang Y, Xu W, Polyansky DE, ACS Catal., 5, 5349 (2015)
- Liu SB, Tao HB, Zeng L, Liu Q, Xu ZG, Liu QX, Luo JL, J. Am. Chem. Soc., 139(6), 2160 (2017)
- Ham YS, Choe S, Kim MJ, Lim T, Kim SK, Kim JJ, Appl. Catal. B: Environ., 208, 35 (2017)
- Park H, Choi J, Kim H, Hwang E, Ha DH, Ahn SH, Kim SK, Appl. Catal. B: Environ., 219, 123 (2017)
- Kim H, Hwang E, Park H, Lee BS, Jang JH, Kim HJ, Ahn SH, Kim SK, Appl. Catal. B: Environ., 206, 608 (2017)
- Kim H, Choe S, Park H, Jang JH, Ahn SH, Kim SK, Nanoscale., 9, 19045 (2017)
- Kim H, Park H, Kim DK, Choi I, Kim SK, J. Alloy. Compd., 785, 296 (2019)
- Kim H, Park H, Kim DK, Oh S, Choi I, Kim SK, ACS Sustainable Chem. Eng., 7(9), 8265 (2019)
- Choi I, Kim HY, Ahn SH, Hwang SJ, Yoo SJ, Kim H, Choi J, Park H, Jang JH, Kim SK, J. Nanosci. Nanotechno., 16(10), 10470 (2016)
- Zhao MJ, Cai C, Wang L, Zhang Z, Zhang JQ, Surf. Coat. Technol., 205, 2160 (2010)
- Kim JJ, Kim SK, Appl. Surf. Sci., 183(3-4), 311 (2001)
- Eliaz N, Shmueli S, Shur I, Benayahu D, Aronov D, Rosenman G, Acta Biomater., 5, 3178 (2009)
- Takacs D, Sziraki L, Torok TI, Solyom J, Gacsi Z, Gal-Solymos K, Surf. Coat. Technol., 201, 4526 (2007)
- Suntola T, Appl. Surf. Sci., 100-101, 391 (1996)
- Park H, Kim H, Hwang E, Ahn SH, Kim SK, J. Nanosci. Nanotechnol., 17, 7843 (2017)
- Yuan X, Kang Y, Zuo J, Xie Y, Ma L, Ren X, Bian Z, Wei Q, Zhou K, Wang X, Yu Z, PLoS One, e19636 (2018)
- Hung KY, Lin YC, Feng HP, Materials, 10, 1164 (2017)
- Becerra JG, Salvarezza RG, Arvia AJ, Electrochimica Acta., 33, 1431 (1988)
- Lu Q, Rosen J, Zhou Y, Hutchings GS, Kimmel YC, Chen JG, Jiao F, Nat Commun., 5, 3242 (2014)
- Rosen J, Hutchings GS, Lu Q, Rivera S, Zhou Y, Vlachos DG, Jiao F, ACS Catal., 5, 4293 (2015)
- Quere D, Annu. Rev. Mater. Res., 38, 71 (2008)
- Hitchcock SJ, Carroll NT, Nicholas MG, J. Mater. Sci., 16, 714 (1981)
- Wenzel RN, Ind. Eng. Chem., 28, 988 (1936)
- Hoshi N, Kato M, Hori Y, J. Electronal. Chem., 440, 283 (1997)