화학공학소재연구정보센터
Clean Technology, Vol.26, No.2, 137-144, June, 2020
암모니아의 재생 및 농축을 위한 금속 전구체에 따른 금속 첨착 활성탄의 흡착 및 탈착 특성에 관한 연구
A Study on the Adsorption and Desorption Characteristics of Metal-Impregnated Activated Carbons with Metal Precursors for the Regeneration and Concentration of Ammonia
E-mail:
초록
저농도 암모니아의 재생 및 농축을 위하여 초음파 함침법으로 금속 첨착 활성탄을 제조하였다. 금속으로는 마그네슘과 구리를 선정하였고, 염화물(Cl-)과 질산염(NO3-) 전구체를 사용하여 활성탄 표면에 첨착하였다. 흡착제의 물리 및 화학적 특성은 TGA, BET 그리고 NH3-TPD를 통해 분석되었다. 암모니아 파과실험은 고정층 반응기를 사용하여 암모니아(1000 mg L-1 NH3, balanced N2)를 100 mL min-1으로 주입하였으며, 온도변동 흡착법(TSA)과 압력변동 흡착법(PSA, 0.3, 0.5, 0.7, 0.9 Mpa)에서 수행하였다. 암모니아의 흡착 및 탈착 성능은 NH3-TPD와 TSA 및 PSA 공정에서 AC-Mg(Cl) > AC-Cu(Cl) > AC-Mg(N)> AC-Cu(N) > AC 순으로 나타났다. 그 중 MgCl2를 사용한 AC-Mg(Cl)은 TSA에서 평균 흡착량 2.138 mmol g-1을 나타내었다. 또한 PSA 0.9 Mpa에서 3.848 mmol g-1로 가장 높은 초기 흡착량을 나타내었다. 활성탄 표면에 금속이 첨착되면 물리흡착뿐만 아니라 화학흡착이 수반되어 흡착 및 탈착 성능이 증가하는 것을 확인하였다. 또한 흡착제는 반복적인 공정에도 안정적인 흡착 및 탈착 성능을 나타내어 TSA와 PSA 공정에서의 적용 가능성을 확인하였다.
Metal-impregnated activated carbons were prepared via ultrasonic-assisted impregnation method for regeneration and low ammonia concentration. Magnesium and copper were selected as metals, while chloride (Cl-) and nitrate (NO3-) precursors were used to impregnate the surface of activated carbon. The physical and chemical properties of the prepared adsorbents were characterized by TGA, BET, and NH3-TPD. The ammonia breakthrough test was carried out using a fixed bed and flowing ammonia gas (1000 mg L-1 NH3, balanced N2) at 100 mL min-1, under conditions of temperature swing adsorption (TSA) and pressure swing adsorption (PSA, 0.3, 0.5, 0.7, 0.9 Mpa). The adsorption and desorption performance of ammonia were in the order of AC-Mg(Cl) > AC-Cu(Cl) > AC-Mg(N) > AC-Cu(N) > AC through NH3-TPD and TSA and PSA processes. AC-Mg(Cl) using MgCl2 showed the average adsorption amount of 2.138 mmol/g at TSA process. Also, AC-Mg(Cl) showed the highest initial adsorption amount of 3.848 mmol/g at PSA 0.9 Mpa. When metal impregnated the surface of the activated carbon, it was confirmed that not only physical adsorption, but also chemical adsorption increased, making enhancement in adsorption and desorption performances possible. Also, the prepared adsorbents showed stable adsorption and desorption performances despite repeated processes, confirming their applicability in the TSA and PSA processes.
  1. Shipman MA, Symes MD, Catal. Today, 286, 57 (2017)
  2. Giddey S, Badwal SPS, Kulkarni A, Int. J. Hydrog. Energy, 38(34), 14576 (2013)
  3. Avery WH, Int. J. Hydrog. Energy, 13(12), 761 (1988)
  4. Lan R, Irvine JTS, Tao SW, Int. J. Hydrog. Energy, 37(2), 1482 (2012)
  5. Kozuch S, Shaik S, J. Phys. Chem. A, 112(26), 6032 (2008)
  6. Erisman JW, Sutton MA, Galloway J, Klimont Z, Winiwarter W, Nat. Geosci., 1(10), 636 (2008)
  7. Kim K, Lee SJ, Kim DY, Yoo CY, Choi JW, Kim JN, Han JL, ChemSusChem, 11(1), 120 (2018)
  8. Chen S, Perathoner S, Ampelli C, Mebrahtu C, Su D, Centi G, Angew. Chem.-Int. Edit., 56(10), 2699 (2017)
  9. Jeong EY, Yoo CY, Jung CH, Park JH, Park YC, Kim JN, Yoon HC, ACS Sustain. Chem. Eng., 5(11), 9662 (2017)
  10. Kordali V, Kyriacou G, Lambrou C, Chem. Commun., (17), 1673-1674 (2000).
  11. Yun DS, Joo JH, Yu JH, Yoon HC, Kim JN, Yoo CY, J. Power Sources, 284, 245 (2015)
  12. Kyriakou V, Garagounis I, Vasileiou E, Vourros A, Stoukides M, Catal. Today, 286, 2 (2017)
  13. Garagounis I, Kyriakou V, Skodra A, Vasileiou E, Stoukides M, Front. Energy Res., 2(1), 1 (2014)
  14. Amar IA, Lan R, Petit CT, Tao S, J. Solid State Electrochem., 15(9), 1845 (2011)
  15. Rieth AJ, Dinca M, J. Am. Chem. Soc., 140(9), 3461 (2018)
  16. Bandosz TJ, Petit C, J. Colloid Interface Sci., 338(2), 329 (2009)
  17. Oktavitri NI, Purnobasuki H, Kuncoro EP, Purnamasari I, IPTEK Journal of Proceedings Series, 3(4), 26 (2017).
  18. Goncalves M, Sanchez-Garcia L, Jardim EDO, Silvestre-Albero J, Rodriguez-Reinoso F, Environ. Sci. Technol., 45(24), 10605 (2011)
  19. Huang CC, Li HS, Chen CH, J. Hazard. Mater., 159(2-3), 523 (2008)
  20. Khabzina Y, Farrusseng D, Microporous Mesoporous Mater., 265, 143 (2018)
  21. Somy A, Mehrnia MR, Amrei HD, Ghanizadeh A, Safari M, Int. J. Greenhouse Gas Control, 3(3), 249 (2009)
  22. Huang CC, Chen HM, Chen CH, Huang JC, Sep. Purif. Technol., 70(3), 291 (2010)
  23. Park JH, Hwang RH, Yoon HC, Yi KB, J. Ind. Eng. Chem., 74, 199 (2019)
  24. Park JH, Rasheed HU, Cho KH, Yoon HC, Yi KB, Korean J. Chem. Eng., 37(6), 1029 (2020)
  25. Mehdipour M, Fatemi S, Sep. Purif. Technol., 47(8), 1199 (2012)
  26. Smith AR, Klosek J, Fuel Process. Technol., 70(2), 115 (2001)
  27. Loy YY, Lee XL, Rangaiah GP, Sep. Purif. Technol., 149, 413 (2015)
  28. Rege SU, Yang RT, Qian KY, Buzanowski MA, Chem. Eng. Sci., 56(8), 2745 (2001)
  29. Ho MT, Allinson GW, Wiley DE, Ind. Eng. Chem. Res., 47(14), 4883 (2008)
  30. Al Amer AM, Laoui T, Abbas A, Al-Aqeeli N, Patel F, Khraisheh M, Atieh MA, Hilal N, Mater. Des., 89, 549 (2016)
  31. Park JH, Baek JH, Jo GH, Rasheed HU, YI KB, Trans. Korean Hydrog. New Energy Soc., 30(2), 95 (2019)
  32. Jeong JM, Park JH, Baek JH, Hwang RH, Jeon SG, Yi KB, Korean J. Chem. Eng., 34(1), 81 (2017)
  33. Wu Z, Jin R, Liu Y, Wang H, Catal. Commun., 9(13), 2217 (2008)
  34. Liu CY, Aika KI, Bull. Chem. Soc. Jpn., 77(1), 123 (2004)
  35. Elmøe TD, Sørensen RZ, Quaade U, Christensen CH, Nørskov JK, Johannessen T, Chem. Eng. Sci., 8(61), 2618 (2006)
  36. Darchen A, Drissidaoudi R, Irzho A, J. Appl. Electrochem., 27(4), 448 (1997)