Clean Technology, Vol.26, No.2, 145-150, June, 2020
NH3-SCR 반응에서 스팀 처리된 zeolite BEA 촉매의 영향
Effect of Steam-Treated Zeolite BEA Catalyst in NH3-SCR Reaction
E-mail:
초록
아산화질소(N2O)는 6대 온실가스 중 하나로 이산화탄소(CO2)의 310배에 해당하는 지구온난화지수(global warming potential, GWP)를 나타내어 N2O를 저감하는 것은 필수적이다. 선택적 촉매환원법(selective catalytic reduction, SCR)은 대기 오염 물질의 하나인 NOx의 제거를 위해 암모니아를 환원제로 사용하여 무해한 N2 및 H2O로 전환하는 기술로 높은 탈질효율을 나타낸다. 본 연구에서는 NH3-SCR반응에서 스팀 처리된 Fe-BEA 촉매가 활성에 미치는 영향을 조사하기 위하여 Fe-BEA 촉매는 Fe를 이온교환하기 전, 고정층 반응기로 100 ℃에서 2 h 동안 스팀 처리 되었다. 제조된 촉매의 NH3-SCR반응 테스트는 고정층 반응기로 WHSV = 180 h-1, 370 ~ 400 ℃에서 수행되었다. 100 ℃에서 스팀 처리된 Fe-BEA(100) 촉매가 370 ~ 390℃에서 Fe-BEA 촉매보다 다소 높은 활성을 나타내었다. NH3-SCR 활성에 영향을 주는 원인을 파악하기 위하여 제조된 촉매는 BET, ICP, NH3-TPD, H2-TPR, 27Al MAS NMR을 통하여 특성분석 되었다. H2-TPR결과를 통해 Fe-BEA(100) 촉매가 Fe-BEA 촉매 보다 isolated Fe3+의 환원이 더 많이 일어난 것을 확인하였으며, 스팀 처리는 활성종인 isolated Fe3+의 양을 늘려주어 활성이 증가한 것으로 판단된다.
Nitrous oxide (N2O) is one of the six greenhouse gases, and it is essential to reduce N2O by showing a global warming potential (GWP) equivalent to 310 times that of carbon dioxide (CO2). Selective catalytic reduction (SCR) is a technology that converts ammonia into harmless N2 and H2O by using ammonia as a reducing agent to remove NOx, one of the air pollutants; the process also produces high denitrification efficiency. In this study, the Fe-BEA catalyst was steam-treated at 100 ℃ for 2 h before Fe ion exchange in the fixed bed reactor in order to investigate the effect of the steam-treated Fe-BEA catalyst on the NH3-SCR reaction. NH3-SCR reaction test of synthesized catalysts was performed at WHSV = 180 h-1, 370 to 400 ℃ in the fixed bed reactor. The Fe-BEA(100) catalyst steam-treated at 100 ℃ showed a somewhat higher activity than the Fe-BEA catalyst at 370 to 390 ℃. The catalysts were characterized by BET, ICP, NH3-TPD, H2-TPR, and 27Al MAS NMR in order to determine the cause affecting NH3-SCR activity. The H2-TPR result confirmed that the Fe-BEA(100) catalyst had a higher reduction of isolated Fe3+ than the Fe-BEA catalyst, and that the steam treatment increased the amount of isolated Fe3+ as an active species, thus increasing the activity.
- Rani B, Singh U, Chuhan AK, Sharma D, Maheshwari R, J. Adv. Sci. Res., 2(4), 28 (2011)
- Chang KS, Appl. Chem. Eng., 19(1), 17 (2008)
- Kaiser J, Hastings MG, Houlton BZ, Rockmann T, Sigman DM, Anal. Chem., 79(2), 599 (2007)
- Maniak G, Stelmachowski P, Stanek JJ, Kotarba A, Sojka Z, Catal. Commun., 15(1), 127 (2011)
- Yang S, Xiong S, Liao Y, Xiao X, Qi F, Peng Y, Fu Y, Shan W, Li J, Environ. Sci. Technol., 48(17), 10354 (2014)
- Baek JH, Lee SM, Park JH, Jeong JM, Hwang RH, Ko CH, Jeon SG, Choi TH, Yi KB, J. Ind. Eng. Chem., 48, 194 (2017)
- Kwon DW, Hong SC, Korea Ind. Chem. News, 19(5), 12 (2016)
- Zhang X, Shen Q, He C, Ma C, Cheng J, Hao Z, Catal. Commun., 18, 151 (2012)
- Mauvezin M, Delahay G, Kisslich F, Coq B, Kieger S, Catal. Lett., 62(1), 41 (1999)
- Xia Y, Zhan W, Guo Y, Guo Y, Lu G, Chin. J. Catal., 37(12), 2069 (2016)
- Maier SM, Jentys A, Lercher JA, J. Phys. Chem. C, 115(16), 8005 (2011)
- Baran R, Millot Y, Onfroy T, Krafft JM, Dzwigaj S, Microporous Mesoporous Mater., 163, 122 (2012)
- Hajjar R, Millot Y, Man PP, Che M, Dzwigaj S, J. Phys. Chem. C, 112(51), 20167 (2008)
- van Bokhoven JA, Koningsberger DC, Kunkeler P, van Bekkum H, Kentgens APM, J. Am. Chem. Soc., 122(51), 12842 (2000)
- Li J, Liu H, An T, Yue Y, Bao X, RSC Adv., 7(54), 33714 (2017)