화학공학소재연구정보센터
Journal of Industrial and Engineering Chemistry, Vol.48, 230-234, April, 2017
Effect of electrodeposition cycles on the performance of gold nanostructures as SERS-active substrates
E-mail:
Au nanostructures electrodeposited on amine-terminated indium tin oxide (ITO) glass as surfaceenhanced Raman scattering (SERS) substrates. The number of electrodeposition cycles (one cycle consists of a nucleation potential of 0.7 V for 2 s and a growth potential of -0.3 V for 1000 s) were optimized. Among as-prepared substrates (1-10 cycles), Au nanostructures formed by three cycles yielded the highest Raman signals of probe molecules, owing to their rough surface morphology with multiple inter-space nanogaps. The Au nanostructure exhibited the very low detection limits of 10 -10M for crystal violet and 10 -9M for dopamine, as an ultrasensitive SERS substrate.
  1. Tian R, Li M, Teng H, Luo H, Yan D, Wei M, J. Mater. Chem. C, 3, 5167 (2015)
  2. Bian JC, Shu SW, Li JF, Huang C, Li YY, Zhang RQ, Appl. Surf. Sci., 333, 126 (2015)
  3. Nhung TT, Bu Y, Lee SW, J. Cryst. Growth, 373, 132 (2013)
  4. Kang T, Jeong S, Kang H, Kim J, Kim HM, Kyeong S, Lee SH, Jeong DH, Jun BH, Lee YS, J. Ind. Eng. Chem., 32, 34 (2015)
  5. Wang YY, Ni ZH, Hu HL, Hao YF, Wong CP, Yu T, Thong JTL, Shen ZX, Appl. Phys. Lett., 97, 163111 (2010)
  6. Yang Y, Shi JL, Kawamura G, Nogami M, Scr. Mater., 58, 862 (2008)
  7. Cui Y, Ren B, Yao JL, Gu RA, Tian ZQ, J. Phys. Chem. B, 110(9), 4002 (2006)
  8. Tian ZQ, Ren B, Wu DY, J. Phys. Chem. B, 106(37), 9463 (2002)
  9. Bu Y, Park SJ, Lee SW, Curr. Appl. Phys., 14(5), 784 (2014)
  10. Nhung TT, Lee SW, ACS Appl. Mater. Interfaces, 6, 21335 (2014)
  11. Do WH, Lee CJ, Kim DY, Jung MJ, J. Ind. Eng. Chem., 18(6), 2141 (2012)
  12. Chen SN, Li X, Zhao YY, Chang LM, Qi JY, Carbon, 81, 767 (2015)
  13. Bu Y, Lee SW, Microchim. Acta, 182, 1313 (2015)
  14. Tian CF, Liu Z, Jin JH, Lebedkin S, Huang C, You HJ, Liu R, Wang LQ, Song XP, Ding BJ, Barczewski M, Schimmel T, Fang JX, Nanotechnology, 23, 165604 (2012)
  15. Cong VT, Ganbold EO, Saha JK, Jang J, Min J, Choo J, Kim S, Song NW, Son SJ, Lee SB, Joo SW, J. Am. Chem. Soc., 136(10), 3833 (2014)
  16. He Y, Yang L, Chen Q, Surf. Coat. Technol., 228, S137 (2013)
  17. He S, Kang MWC, Khan FJ, Tan EKM, Reyes MA, Kah JCY, J. Opt., 17, 114013 (2015)
  18. German N, Ramanavicius A, Ramanaviciene A, Sens. Actuators B-Chem., 203, 25 (2014)
  19. German N, Ramanavicius A, Ramanaviciene A, Sens. Actuators B-Chem., 203, 25 (2014)
  20. Yoo J, Lee SW, Bull. Korean Chem. Soc., 35, 2765 (2014)
  21. Bu Y, Lee S, ACS Appl. Mater. Interfaces, 4, 3923 (2012)
  22. Ye M, Wei Z, Hu F, Wang J, Ge G, Hu Z, Shao M, Lee ST, Liu J, Nanoscale, 7, 13427 (2015)
  23. Kim HM, Jeong S, Hahm E, Kim J, Cha MG, Kim KM, Kang H, Kyeong S, Pham XH, Lee YS, Jeong DH, Jun BH, J. Ind. Eng. Chem., 33, 22 (2016)
  24. Kim HM, Kang YL, Chung WJ, Kyeong S, Jeong S, Kang H, Jeong C, Rho WY, Kim DH, Jeong DH, Lee YS, Jun BH, J. Ind. Eng. Chem., 21, 158 (2015)
  25. Bu Y, Lee S, Jpn. J. Appl. Phys., 52 (2013)
  26. Wang R, Xu Y, Wang CY, Zhao HZ, Wang RJ, Liao X, Chen L, Chen G, Appl. Surf. Sci., 349, 805 (2015)
  27. Siek M, Kaminska A, Kelm A, Rolinski T, Holyst R, Opallo M, Niedzioka-Jonsson J, Electrochim. Acta, 89, 284 (2013)
  28. Walsh FC, Low CTJ, Surf. Coat. Technol., 288, 79 (2016)
  29. Bu Y, Lee SW, J. Nanosci. Nanotechnol., 13, 5992 (2013)
  30. Nguyen TA, Lee SW, Mater. Res. Bull., 83, 550 (2016)
  31. Petrii OA, Russ. Chem. Rev., 84, 159 (2015)
  32. Ouyang RH, Liu JX, Li WX, J. Am. Chem. Soc., 135(5), 1760 (2013)
  33. Ustarroz J, Ke X, Hubin A, Bals S, Terryn H, J. Phys. Chem. C, 116, 2322 (2012)