화학공학소재연구정보센터
Korean Chemical Engineering Research, Vol.58, No.1, 127-134, February, 2020
실로퓨트에 의한 아세나프텐 흡착에 관한 등온흡착식, 동역학 및 열역학적 특성
Isotherm, Kinetic and Thermodynamic Characteristics for Adsorption of Acenaphthene onto Sylopute
E-mail:
초록
상용흡착제 실로퓨트에 의한 Taxus chinensis 유래 주요 타르 성분인 아세나프텐의 흡착 특성을 조사하였다. 초기 아세나프텐 농도, 흡착 온도 및 시간에 따른 흡착 데이터를 Langmuir, Freundlich, Temkin 및 Dubinin-Radushkevich 등온흡착식에 적용한 결과, Langmuir 등온흡착식이 가장 적합하였다. 동역학적 흡착 데이터는 유사 이차 속도식에 가장 잘 따름을 알 수 있었다. 열역학적 파라미터로부터 흡착 공정이 적합하며 비자발적 발열이었다. 등량흡착열은 흡착량에 의존하지 않아 실로퓨트의 표면에너지가 균일함을 알 수 있었다.
The adsorption characteristics of the major tar compound, acenaphthene, derived from Taxus chinensis by the commercial adsorbent Sylopute were investigated using different parameters such as initial acenaphthene concentration, adsorption temperature, and contact time. Out of Langmuir, Freundlich, Temkin and Dubinin-Radushkevich isotherm models, adsorption data were best described by Langmuir isotherm. The adsorption kinetics was evaluated by pseudo-firstorder, pseudo-second-order and intraparticle diffusion models. The pseudo-second-order model was found to explain the adsorption kinetics most effectively. Thermodynamic parameters revealed the feasibility, nonspontaneity and exothermic nature of adsorption. In addition, the isosteric heat of adsorption was independent of surface loading indicating the Sylopute used as an energetically homogeneous surface.
  1. Priyadarshini K, Keerthi AU, Med. Chem., 2, 139 (2012)
  2. Kang HJ, Kim JH, Biotechnol. Bioproc. Eng., 24, 513 (2019)
  3. Pyo SH, Park HB, Song BK, Han BH, Kim JH, Process Biochem., 39(12), 1985 (2004)
  4. Lee CG, Kim JH, Process Biochem., 59, 216 (2017)
  5. Kim GJ, Park GY, Kim JH, Korean J. Microbiol. Biotechnol., 41, 272 (2013)
  6. Park GY, Kim GJ, Kim JH, J. Ind. Eng. Chem., 21, 151 (2015)
  7. Oh HJ, Jang HR, Jung KY, Kim JH, Process Biochem., 47(2), 331 (2012)
  8. Lee CG, Kim JH, Korean Chem. Eng. Res., 52(4), 497 (2014)
  9. Bang SY, Kim JH, Biotechnol. Bioproc. Eng., 22, 620 (2017)
  10. Lim YS, Kim JH, J. Chem. Thermodyn., 115, 261 (2017)
  11. Park SH, Kim JH, Biotechnol. Bioproc. Eng., 23, 541 (2018)
  12. Yang JW, Kim JH, Korean Chem. Eng. Res., 57(2), 210 (2019)
  13. Kim YS, Kim JH, J. Chem. Thermodyn., 130, 104 (2019)
  14. Bucic-Kojic A, Planinic M, Tomas S, Bilic M, Velic D, J. Food Eng., 81(1), 236 (2007)
  15. Marin ABP, Aguilar MI, Meseguer VF, Ortuno JF, Saez J, Llorens M, Chem. Eng. J., 155(1-2), 199 (2009)
  16. Langergren S, Svenska BK, Veterskapsakad Handlingar, 24, 1 (1898)
  17. Ho YS, McKay G, Chem. Eng. J., 70(2), 115 (1998)
  18. Weber WJ, Morris JC, J. Sanit. Eng. Div. Am. Soc. Civ. Eng., 89, 31 (1963)
  19. Wu FC, Tseng RL, Juang RS, J. Colloid Interface Sci., 283(1), 49 (2005)
  20. Saha P, Chowdhury S, Prof. Mizutani Tadashi (Ed.), ISBN: 978-953-307-544-0, InTech, Available from: http://www.intechopen.com/books/thermodynami-cs/insight-into-adsorption-thermodynamics (2011).
  21. Shin HS, Kim JH, Process Biochem., 51(7), 917 (2016)
  22. Jain M, Garg VK, Kadirvelu K, J. Hazard. Mater., 162(1), 365 (2009)
  23. Dogan M, Alkan M, Demirbas O, Ozdemir Y, Ozmetin C, Chem. Eng. J., 124(1-3), 89 (2006)
  24. Cheung WH, Szeto YS, McKay G, Bioresour. Technol., 98(15), 2897 (2007)
  25. Hata H, Saeki S, Kimura T, Sugahara Y, Kuroda K, Chem. Mater., 11, 1110 (1999)
  26. Boparai HK, Joseph M, O'Carroll DM, J. Hazard. Mater., 186(1), 458 (2011)
  27. Zulfikar MA, Int. J. Chem., Environ. Biol. Sci., 1, 88 (2013)
  28. Dogan M, Abak H, Alkan M, J. Hazard. Mater., 164(1), 172 (2009)
  29. Chowdhury S, Mishra R, Saha P, Kushwaha P, Desalination, 265(1-3), 159 (2011)