화학공학소재연구정보센터
Clean Technology, Vol.20, No.4, 383-389, December, 2014
입체 장애 알카놀아민 혼합 수용액에서 중탄산칼륨 결정의 냉각 반용매 결정화
Cooling and Antisolvent Crystallization of Potassium Bicarbonate in the Presence of Sterically Hindered Alkanolamines
E-mail:,
초록
이산화탄소 흡수공정은 대규모의 이산화탄소를 처리하는데 유리하지만, 다량의 흡수액을 재생하는데 필요한 현열과 증발열로 인한 에너지 비용 상승이 단점으로 지적되고 있다. 이를 극복하기 위해 이산화탄소를 흡수한 탄산칼륨 흡수액을 냉각결정화시켜, 다량의 물로부터 이산화탄소가 많이 포함된 중탄산칼륨 결정을 선택적으로 분리할 수 있다. 본 연구에서는 이산화탄소 분리효율을 높이기 위해 입체 장애 알카놀아민 첨가제를 도입하여, 이들이 중탄산칼륨 연속식 결정화에 미치는 영향에 대해 살펴보았다. 결정의 석출량은 2-아미노-2-메틸-1-프로판올(2-amino-2-methyl-1-propanol, AMP), 2-아미노-2-메틸-1,3-프로판디올(2-amino-2-methyl-1,3-propanediol, AMPD), 2-아미노-2-히드록시메틸-1,3-프로판디올(2-amino-2-hydroxymethyl-1,3-propanediol, AHPD)의 순서로 증가하였으며, 반용매로 작용하는 첨가제들의 히드록실기 개수와 관계가 있는 것으로 나타났다. 탄소 핵자기공명분광 분석 결과, 첨가제들은 입체 장애 효과에 의해 중탄산 이온의 생성을 유도하고 과포화도를 상승시킨 것으로 나타났다. 또한, 첨가제들은 과포화도 상승을 통해 평균 입도와 결정 성장 속도를 증가시키는 것으로 나타났다. 입체 장애 알카놀아민 첨가제는 중탄산칼륨 결정화를 촉진함으로써, 물로부터 이산화탄소의 분리효율을 향상시키고 재생에너지를 저감시킬 수 있을 것으로 기대된다.
CO2 absorption processes have a good potential for large scale capture of CO2 but a large amount of absorbing solution has to be regenerated, undesirably increasing the consumption of energy such as sensible heat and latent heat of vaporization. In this study, a cooling crystallization process which would separate the CO2-rich potassium bicarbonate crystals from CO2-lean water was developed to reduce the energy penalty. Sterically hindered alkanolamine additives were used to enhance the CO2 removal efficiency and their antisolvent effect on the crystallization was found in a continuous cooling crystallizer. The production yields of crystals were increased in the sequence of 2-amino-2-methyl-1-propanol (AMP) < 2-amino-2-methyl-1,3-propanediol (AMPD) < 2-amino-2-hydroxymethyl-1,3-propanediol (AHPD), which are related to the number of hydroxyl groups in the additive molecules. Using 13carbon nuclear magnetic resonance, the additives favored the formation of bicarbonate ions by steric hindrance effect and increased the supersaturation of KHCO3. It is shown that the additives increase the mean size of crystals and crystal growth rate by increasing supersaturation. The additives are promising for enhancing the CO2 removal efficiency and reducing the regeneration energy cost of CO2 absorbing solution by promoting KHCO3 crystallization.
  1. Zaman M, Lee JH, Korean J. Chem. Eng., 30(8), 1497 (2013)
  2. Markewitz P, Schreiber A, Vogele S, Zapp P, Energy Procedia, 1, 3763 (2009)
  3. Abu-Zahra MRM, Niederer JPM, Feron PHM, Versteeg GF, Int. J. Greenhouse Gas Control, 1, 135 (2007)
  4. Wang M, Lawal A, Stephenson P, Sidders J, Ramshaw C, Chem. Eng. Res. Des., 89(9A), 1609 (2011)
  5. Benson HE, Field JH, Jimeson RM, Chem. Eng. Prog., 50, 356 (1954)
  6. Field JH, Johnson GE, Benson HE, Tosh JS, “Removing Hydrogen Sulfide by Hot Potassium Carbonate Absorption,” Bureau of Mines Reports, Washington D.C., pp. 5660-5680 (1960)
  7. Berrouk AS, Ochieng R, Fuel Process Technol., 127, 20 (2014)
  8. Cullinane JT, Rochelle GT, Chem. Eng. Sci., 59(17), 3619 (2004)
  9. Thee H, Suryaputradinata YA, Mumford KA, Smith KH, da Silva G, Kentish SE, Stevens GW, Chem. Eng. J., 210, 271 (2012)
  10. Kim YE, Choi JH, Nam SC, Yoon YI, J. Ind. Eng. Chem., 18(1), 105 (2012)
  11. Pandit JK, Harkin T, Anderson C, Ho M, Wiley D, Int. J. Greenhouse Gas Control, 28, 234 (2014)
  12. Moon CH, Jung T, Cho CS, Kim JN, Rhee YW, Clean Technol., 20(2), 146 (2014)
  13. Anderson C, Ho M, Harkin T, Wiley D, Hooper B, Greenhouse Gases Sci. Technol., 4, 8 (2014)
  14. Lide DR, CRC Handbook of Chemistry and Physics, 87th Ed., CRC Press (2007)
  15. Randolph AD, Larson MA, Theory of Particulate Processes, 2nd ed., Academic Press, San Diego (1988)
  16. Mullin JW, Crystallization, 3rd ed., Butterworth-Heinemann, Oxford (1993)
  17. Tavare NS, Industrial Crystallization: Process Simulation Analysis and Design, Plenum Press, New York (1995)
  18. Abegg CF, Stevens JD, Larson MA, AIChE J., 14, 118 (1968)
  19. Mani F, Peruzzini M, Stoppioni P, Green Chem., 8, 995 (2006)
  20. DeOliveira DB, Laursen RA, J. Am. Chem. Soc., 119(44), 10627 (1997)
  21. Hilliard MD, “A Predictive Thermodynamic Model for an Aqueous Blend of Potassium Carbonate, Piperazine, and Monoethanolamine for Carbon Dioxide Capture from Flue Gas,” Ph.D. Dissertion, University of Texas at Austin (2008)
  22. Fosbol PL, Thomsen K, Stenby EH, Ind. Eng. Chem. Res., 48(4), 2218 (2009)
  23. Cogoni G, Baratti R, Romagnoli JA, Ind. Eng. Chem. Res., 52(28), 9612 (2013)
  24. Vaidya PD, Kenig EY, Chem. Eng. Technol., 30(11), 1467 (2007)
  25. Hook RJ, Ind. Eng. Chem. Res., 36(5), 1779 (1997)
  26. Bougie F, Iliuta MC, J. Chem. Eng. Data, 57(3), 635 (2012)
  27. Shen SF, Feng XX, Ren SF, Energy Fuels, 27(10), 6010 (2013)
  28. Kim YE, Lim JA, Jeong SK, Yoon YI, Bae S, Bull. Korean Chem. Soc., 34, 783 (2013)
  29. Barzagli F, Mani F, Peruzzini M, Int. J. Greenhouse Gas Control, 5, 448 (2011)
  30. Franke J, Mersmann A, Chem. Eng. Sci., 50(11), 1737 (1995)