화학공학소재연구정보센터
Korean Journal of Chemical Engineering, Vol.35, No.7, 1509-1516, July, 2018
Conceptual feasibility studies of a COX-free hydrogen production from ammonia decomposition in a membrane reactor for PEM fuel cells
E-mail:
COX-free hydrogen production from ammonia decomposition in a membrane reactor (MR) for PEM fuel cells was studied using a commercial chemical process simulator, Aspen HYSYS®. With process simulation models validated by previously reported kinetics and experimental data, the effect of key operating parameters such as H2 permeance, He sweep gas flow, and operating temperature was investigated to compare the performance of an MR and a conventional packed-bed reactor (PBR). Higher ammonia conversions and H2 yields were obtained in an MR than ones in a PBR. It was also found that He sweep gas flow was favorable for XNH3 enhancement in an MR with a critical value (5 kmol h-1), above which no further effect was observed. A higher H2 permeance led to an increased H2 yield and H2 yield enhancement in an MR with the reverse effect of operating temperature on the enhancement. In addition, lower operating temperature resulted in higher XNH3 enhancement and H2 yield enhancement as well as NG cost savings in a MR compared to a conventional PBR.
  1. Dragomir F, Dragomir O, Olariu N, Oprea A, SBEEF, 3, 5 (2013)
  2. Lu X, Xie S, Yang H, Tong Y, Ji H, Chem. Soc. Rev., 43, 7581 (2014)
  3. Abashar MEE, Al-Sughair YS, Al-Mutaz IS, Appl. Catal. A: Gen., 236(1-2), 35 (2002)
  4. Midilli A, Int. J. Glob. Warm., 10, 354 (2016)
  5. Yang Z, Nie HG, Chen X, Chen XH, Huang SM, J. Power Sources, 236, 238 (2013)
  6. Lamy C, Jaubert T, Baranton S, Coutanceau C, J. Power Sources, 245, 927 (2014)
  7. Sharaf OZ, Orhan MF, Renew. Sust. Energ. Rev., 32, 810 (2014)
  8. Sousa R, Gonzalez ER, J. Power Sources, 147(1-2), 32 (2005)
  9. Mohtadi R, Lee WK, Van Zee JW, Appl. Catal. B: Environ., 56(1-2), 37 (2005)
  10. Thounthong P, Rael S, Davat B, J. Power Sources, 193(1), 376 (2009)
  11. Baschuk JJ, Li X, Appl. Energy, 86(2), 181 (2009)
  12. Contreras A, Posso F, Guervos E, Appl. Energy, 87(4), 1376 (2010)
  13. Shabani B, Andrews J, Int. J. Hydrog. Energy, 36(9), 5442 (2011)
  14. Wang FC, Chiang YS, Int. J. Hydrog. Energy, 37(15), 11299 (2012)
  15. Byambasuren U, Jeon Y, Altansukh D, Ji Y, Shul YG, Korean J. Chem. Eng., 33(6), 1831 (2016)
  16. Minh NQ, Solid State Ion., 174(1-4), 271 (2004)
  17. Brett DJL, Atkinson A, Brandon NP, Skinner SJ, Chem. Soc. Rev., 37, 1568 (2008)
  18. Jacobson AJ, Chem. Mat., 22, 660 (2010)
  19. Dicks AL, Curr. opin. Solid State Mat. Sci., 8, 379 (2004)
  20. Brouwer J, Jabbari F, Leal EM, Orr T, J. Power Sources, 158(1), 213 (2006)
  21. Kim TY, Kim BS, Park C, Yeo YK, Korean J. Chem. Eng., 34(7), 1952 (2017)
  22. Song RH, Kim CS, Shin DR, J. Power Sources, 86(1-2), 289 (2000)
  23. Neergat M, Shukla AK, J. Power Sources, 102(1-2), 317 (2001)
  24. Sammes N, Bove R, Stahl K, Curr. opin. Solid State Mat. Sci., 8, 372 (2004)
  25. Gulzow E, J. Power Sources, 61, 99 (1996)
  26. Kordesch K, Hacker V, Gsellmann J, Cifrain M, Faleschini G, Enzinger P, Fankhauser R, Ortner M, Muhr M, Aronson RR, J. Power Sources, 86(1-2), 162 (2000)
  27. Bej B, Pradhan NC, Neogi S, Catal. Today, 207, 28 (2013)
  28. LeValley TL, Richard AR, Fan MH, Int. J. Hydrog. Energy, 39(30), 16983 (2014)
  29. Nawfal M, Gennequin C, Labaki M, Nsouli B, Aboukais A, Abi-Aad E, Int. J. Hydrog. Energy, 40(2), 1269 (2015)
  30. Ursua A, Gandia LM, Sanchis P, Proc. IEEE, 100, 410 (2012)
  31. Voldsund M, Jordal K, Anantharaman R, Int. J. Hydrog. Energy, 41(9), 4969 (2016)
  32. Song CS, Catal. Today, 77(1-2), 17 (2002)
  33. Seo YT, Seo DJ, Jeong JH, Yoon WL, J. Power Sources, 160(1), 505 (2006)
  34. Kim YH, Park ED, Lee HC, Lee D, Appl. Catal. A: Gen., 366(2), 363 (2009)
  35. Park ED, Lee D, Lee HC, Catal. Today, 139, 280 (2009)
  36. Chein RY, Chen YC, Chang CS, Chung JN, Int. J. Hydrog. Energy, 35(2), 589 (2010)
  37. Lu AH, Nitz JJ, Comotti M, Weidenthaler C, Schlichte K, Lehmann CW, Terasaki O, Schuth F, J. Am. Chem. Soc., 132(40), 14152 (2010)
  38. Miyamoto M, Hayakawa R, Makino Y, Oumi Y, Uemiya S, Asanuma M, Int. J. Hydrog. Energy, 39(19), 10154 (2014)
  39. Di Carlo A, Vecchione L, Del Prete Z, Int. J. Hydrog. Energy, 39(2), 808 (2014)
  40. Li G, Kanezashi M, Yoshioka T, Tsuru T, AIChE J., 59(1), 168 (2013)
  41. Li G, Kanezashi M, Lee HR, Maeda M, Yoshioka T, Tsuru T, Int. J. Hydrog. Energy, 37(17), 12105 (2012)
  42. Abashar MEE, J. King Saud Univ., Eng. Sci. (2016), DOI:10.1016/j.jksues.2016.01.002.
  43. Rahimpour MR, Asgari A, Int. J. Hydrog. Energy, 34(14), 5795 (2009)
  44. Collins JP, Way JD, J. Membr. Sci., 96(3), 259 (1994)
  45. Chambers A, Yoshii Y, Inada T, Miyamoto T, Can. J. Chem. Eng., 74(6), 929 (1996)
  46. Garcia-Garcia FR, Ma YH, Rodriguez-Ramos I, Guerrero-Ruiz A, Catal. Commun., 9, 482 (2008)
  47. Rizzuto E, Palange P, Del Prete Z, Int. J. Hydrog. Energy, 39(22), 11403 (2014)
  48. Itoh N, Oshima A, Suga E, Sato T, Catal. Today, 236, 70 (2014)
  49. Di Carlo A, Dell'Era A, Del Prete Z, Int. J. Hydrog. Energy, 36(18), 11815 (2011)
  50. Jasuja H, Peterson GW, Decoste JB, Browe MA, Walton KS, Chem. Eng. Sci., 124, 118 (2015)
  51. Vitse F, Cooper M, Botte GG, J. Power Sources, 14218, 2005
  52. Amar IA, Lan R, Petit CTG, Tao S, J. Solid State Electochem., 15, 1845 (2011)
  53. Modak JM, Resonance, 16, 1159 (2011)
  54. Temkin MI, Pyzhev V, Acta Phys. Chim. URSS, 12, 217 (1940)
  55. West AH, Posarac D, Ellis N, Bioresour. Technol., 99(14), 6587 (2008)
  56. Bassyouni M, ul Hasan SW, Abdel-Aziz MH, Abdel-hamid SMS, Naveed S, Hussain A, Ani FN, Energy Conv. Manag., 88, 693 (2014)
  57. Øi LE, Brathen T, Berg C, Brekne SK, Flatin M, Johnsen R, Moen IG, Thomassen E, Energy Procedia, 51, 224 (2014)
  58. Lee B, Lee S, Jung HY, Ryi SK, Lim H, Front. Chem. Sci. Eng., 10, 224 (2014)
  59. Lee B, Jeong S, Lee S, Jung HY, Ryi SK, Lim H, Greenh. Gases, 7, 542 (2017)
  60. Sarvar-Amini A, Sotudeh-Gharebagh R, Bashiri H, Mostoufi N, Haghtalab A, Energy Fuels, 21(6), 3593 (2007)
  61. Roberts M, Zabransky R, Doong S, Lin J, Single membrane reactor configuration for separation of hydrogen, carbon dioxide and hydrogen sulfide, Department of Energy, U.S.A. (2008).
  62. Jeong S, Kim S, Lee B, Ryi SK, Lim H, Int. J. Hydrogen Energy (2017), DOI:10.1016/j.ijhydene.2017.07.202.
  63. Kim S, Ryi SK, Lim H, Int. J. Hydrogen Energy (2017), DOI:10.1016/j.ijhydene.2017.09.084.
  64. Zeng PY, Chen ZH, Zhou W, Gu HX, Shao ZP, Liu SM, J. Membr. Sci., 291(1-2), 148 (2007)
  65. Mendes D, Chibante V, Zheng JM, Tosti S, Borgognoni F, Mendes A, Madeira LM, Int. J. Hydrog. Energy, 35(22), 12596 (2010)
  66. Lobera MP, Serra JM, Foghmoes SP, Søgaard M, Kaiser A, J. Membr. Sci., 358-356, 154 (2011)
  67. Santos A, Coronas J, Menendez M, Santamaria J, Catal. Lett., 30, 189 (1994)
  68. Rao MB, Sircar S, J. Membr. Sci., 110(1), 109 (1996)
  69. Ferreira-Aparicio P, Benito M, Kouachi K, Menad S, J. Catal., 231(2), 331 (2005)
  70. Bhatia S, Thien CY, Mohamed AR, Chem. Eng. J., 148(2-3), 525 (2009)
  71. Yu W, Ohmori T, Yamamoto T, Endo A, Nakaiwa M, Hayakawa T, Itoh N, Int. J. Hydrog. Energy, 30(10), 1071 (2005)
  72. Lee B, Lim H, Korean J. Chem. Eng., 34(1), 199 (2017)
  73. Kikuchi E, Catal. Today, 56(1-3), 97 (2000)
  74. Lim H, Oyama ST, J. Membr. Sci., 378(1-2), 179 (2011)
  75. Rahimpour MR, Samimi F, Babapoor A, Tohidian T, Mohebi S, Chem. Eng. Process., 121, 24 (2017)