1 - 6 |
Influence of the depth calibration procedure on the apparent shift of impurity depth profiles measured under conditions of long-term changes in erosion rate Wittmaack K |
7 - 9 |
In situ atomic force microscopy observation on the decay of small islands on Au single crystal in acid solution Hirai N, Watanabe K, Shiraki A, Hara S |
10 - 12 |
Preparation of macroscopic two-dimensional ordered array of indium nanodots Chen SH, Fei GT, Cui P, Cheng GS, Zhu Y, Zhu XG, Zeng ZY, Zhang LD |
13 - 15 |
Growth and modification of Ag islands on hydrogen terminated Si(100) surfaces Butcher MJ, Jones FH, Beton PH |
16 - 20 |
Comparative study of Ni nanowires patterned by electron-beam lithography and fabricated by lift-off and dry etching techniques Park YD, Jung KB, Overberg M, Temple D, Pearton SJ, Holloway PH |
21 - 24 |
Photoluminescence study of InAlAs quantum dots grown on differently oriented surfaces Zhou W, Xu B, Xu HZ, Jiang WH, Liu FQ, Gong Q, Ding D, Liang JB, Wang ZG, Zhu ZM, Li GH |
25 - 31 |
Fabrication and transport measurements of YBa2Cu3O7-x nanostructures Larsson P, Nilsson B, Ivanov ZG |
32 - 36 |
Low-permittivity nanocomposite materials using sculptured thin film technology Venugopal VC, Lakhtakia A, Messier R, Kucera JP |
37 - 40 |
Atomic force microscopy and transmission electron microscopy observations of KOH-etched GaN surfaces Shiojima K |
41 - 47 |
Atomic force microscope study of amorphous silicon and polysilicon low-pressure chemical-vapor-deposited implanted layers Edrei R, Shauly EN, Hoffman A |
48 - 54 |
Analysis of electron standing waves in a vacuum gap of scanning tunneling microscopy: Measurement of band bending through energy shifts of electron standing wave Suganuma Y, Tomitori M |
55 - 59 |
Atomic force microscope tip-induced anodization of titanium film for nanofabrication of oxide patterns Huh C, Park SJ |
60 - 63 |
Scanning tunneling microscopy of defects in NbSe2 Prodan A, Marinkovic V, Gril R, Ramsak N, van Midden HJP, Boswell FW, Bennett JC |
64 - 68 |
Atomic force microscopy of solid-state reaction of alcohol: Substitution and dehydration Zeng QD, Wang C, Bai CL, Li Y, Yan XJ |
69 - 75 |
Frictional properties of titanium carbide, titanium nitride, and vanadium carbide: Measurement of a compositional dependence with atomic force microscopy Lee S, El-bjeirami O, Perry SS, Didziulis SV, Frantz P, Radhakrishnan G |
76 - 81 |
Scanning tunneling microscope study of diamond films for electron field emission Rakhimov AT, Suetin NV, Soldatov ES, Timofeyev MA, Trifonov AS, Khanin VV, Silzars A |
82 - 89 |
Electromagnetic transmission of nanometric circular aperture on top of a metal coated optical fiber tip: Theory Alvarez L, Xiao MF |
90 - 93 |
InP-based photonic micro-sensor for near field optical investigations Belier B, Castagne M, Falgayrettes P, Bonnafe J, Santoso A, Leclercq JL |
94 - 99 |
Megahertz silicon atomic force microscopy (AFM) cantilever and high-speed readout in AFM-based recording Hosaka S, Etoh K, Kikukawa A, Koyanagi H |
100 - 103 |
Cantilever technique for the preparation of cross sections for transmission electron microscopy using a focused ion beam workstation Langford RM, Reeves CM, Goodall JG, Findlay J, Jeffree CE |
104 - 106 |
Carbon-nanotube probe equipped magnetic force microscope Arie T, Nishijima H, Akita S, Nakayama Y |
107 - 111 |
Effects of molecular properties on nanolithography in polymethyl methacrylate Dobisz EA, Brandow SL, Bass R, Mitterender J |
112 - 116 |
Critical tool performance analysis for SCALPEL extensibility Stanton ST, Liddle JA, Waskiewicz WK, Mkrtchyan MM |
117 - 121 |
Resolution of the multiple aperture pixel by pixel enhancement of resolution electron lithography concept Kampherbeek BJ, Wieland MJ, Kruit P |
122 - 126 |
Thermostable trilayer resist for niobium lift-off Dubos P, Charlat P, Crozes T, Paniez P, Pannetier B |
127 - 135 |
Double-layer inorganic antireflective system for KrF lithography Xu M, Ko TM |
136 - 139 |
On-wafer spectrofluorometric evaluation of the response of photoacid generator compounds in chemically amplified photoresists Feke GD, Hessman D, Grober RD, Lu B, Taylor JW |
140 - 143 |
In situ normal incidence reflectance study on the effect of growth rate of nucleation layer on GaN by metalorganic chemical vapor deposition Kim DJ, Moon YT, Ahn KS, Park SJ |
144 - 149 |
Ion-etch produced damage on InAs(100) studied through collective-mode electronic Raman scattering Tanzer TA, Bohn PW, Roshchin IV, Green LH |
150 - 155 |
Substrate transfer process for InP-based heterostructure barrier varactor devices Arscott S, Mounaix P, Lippens D |
156 - 165 |
Sub-0.1 mu m gate etch processes: Towards some limitations of the plasma technology? Desvoivres L, Vallier L, Joubert O |
166 - 171 |
High-performance silicon dioxide etching for less than 0.1-mu m-high-aspect contact holes Samukawa S, Mukai T |
172 - 190 |
Ion-assisted etching and profile development of silicon in molecular and atomic chlorine Levinson JA, Shaqfeh ESG, Balooch M, Hamza AV |
191 - 196 |
Temperature dependence of neutral and positively charged Si and SiCl etch products during argon-ion-enhanced etching of Si(100) by Cl-2 Materer N, Goodman RS, Leone SR |
197 - 200 |
Round-off of trench corner by post-cylindrical molecular pump sidewall oxidation for 0.25 mu m and beyond technologies Chung YS, Jeon CW, Kim JH, Han SK, Hwang JW, Kim SY, Lee JG, Hyun IS |
201 - 207 |
Effects of slurry formulations on chemical-mechanical polishing of low dielectric constant polysiloxanes: hydrido-organo siloxane and methyl silsesquioxane Chen WC, Yen CT |
208 - 215 |
Dielectric anisotropy and molecular orientation of fluorinated polymers confined in submicron trenches Cho TH, Lee JK, Ho PS, Ryan ET, Pellerin JG |
216 - 220 |
High dielectric constant (Ba0.65Sr0.35)(Ti0.41Zr0.59)O-3 capacitors for Gbit-scale dynamic random access memory devices Kim JS, Yoon SG |
221 - 230 |
Effectiveness of Ti, TiN, Ta, TaN, and W2N as barriers for the integration of low-k dielectric hydrogen silsesquioxane Zeng YX, Russell SW, McKerrow AJ, Chen LH, Alford TL |
231 - 236 |
Orientation control in PZT/Pt/TiN multilayers with various Si and SiO2 underlayers for high performance ferroelectric memories Kushida-Abdelghafar K, Torii K, Mine T, Kachi T, Fujisaki Y |
237 - 241 |
Development of tungsten nitride film as barrier layer for copper metallization Ganguli S, Chen L, Levine T, Zheng B, Chang M |
242 - 251 |
Characterization of WF6/N-2/H-2 plasma enhanced chemical vapor deposited WxN films as barriers for Cu metallization Li H, Jin S, Bender H, Lanckmans F, Heyvaert I, Maex K, Froyen L |
252 - 261 |
Material and process studies in the integration of plasma-promoted chemical-vapor deposition of aluminum with benzocyclobutene low-dielectric constant polymer Talevi R, Gundlach H, Bian ZL, Knorr A, van Gestel M, Padiyar S, Kaloyeros AE, Geer RE, Shaffer EO, Martin S |
262 - 266 |
Integration of Pt/Ru electrode structures by metalorganic chemical-vapor deposition on poly-Si/SiO2/Si Choi ES, Yang JH, Park JB, Yoon SG |
267 - 278 |
Mechanistic feature-scale profile simulation of SiO2 low-pressure chemical vapor deposition by tetraethoxysilane pyrolysis Labun AH, Moffat HK, Cale TS |
279 - 282 |
Consistent refractive index parameters for ultrathin SiO2 films Wang Y, Irene EA |
283 - 287 |
Thermal stability and etching characteristics of electron beam deposited SiO and SiO2 LaRoche JR, Ren F, Lothian R, Hong J, Pearton SJ, Lambers E, Hsu CH, Wu CS, Hoppe M |
288 - 292 |
Dielectric properties of SiO2 thin films prepared by the sol-gel technique Garcia-Cerda LA, Perez-Roblez JF, Gonzalez-Hernandez J, Mendoza-Galvan A, Vorobiev YV, Prokhorov EF |
293 - 295 |
Ultraviolet light enhancement of Ta2O5 dry etch rates Lee KP, Cho H, Singh RK, Pearton SJ, Hobbs C, Tobin P |
296 - 298 |
Comment on: "Epitaxial silicon grown on CeO2/Si(111) structure by molecular beam epitaxy" Paparazzo E |
299 - 302 |
Mapping of wafer profile to plasma processing conditions: Forward and reverse maps Lane J, Rietman EA, Layadi N, Lee JTC |
303 - 306 |
Compensation effect during water desorption from siloxane-based spin-on dielectric thin films Proost J, Baklanov M, Maex K, Delaey L |
307 - 312 |
Atomic fluorine beam etching of silicon and related materials Larson PR, Copeland KA, Dharmasena G, Lasell RA, Keil M, Johnson MB |
313 - 316 |
Secondary ion mass spectroscopic analysis of copper migration at the copper/polyimide interface Miki N, Tanaka K, Takahara A, Kajiyama T |
317 - 320 |
Wavelength-independent optical lithography Pau S, Nalamasu O, Cirelli R, Frackoviak J, Timko A, Watson P, Klemens F, Timp G |
321 - 324 |
Organic/SiO2 chemical vapor deposited nanocomposites as templates for nanoporous silica Senkevich JJ |
325 - 327 |
Combinatorial approach for the synthesis of terpolymers and their novel application as very-high-contrast resists for x-ray nanolithography Gonsalves KE, Wang JZ, Wu HP |
328 - 333 |
Sharpening of field-ion specimens and positioning of features of interest by ion-beam milling Larson DJ, Russell KF, Cerezo A |
337 - 337 |
Microelectronics and nanometer structures processing, measurement, and phenomena - Papers from the Fifth International Workshop on the Measurement, Characterization, and Modeling of Ultra-shallow Doping Profiles in Semiconductors - 28-31 March 1999 - Research Triangle Park North Carolina -Preface Larson L |
338 - 345 |
Design and integration considerations for end-of-the roadmap ultrashallow junctions Osburn CM, De I, Yee KF, Srivastava A |
346 - 353 |
Front end of line considerations far progression beyond the 100 nm node ultrashallow junction requirements Cleavelin CR, Covington BC, Larson LA |
354 - 360 |
Models and methods: Effective use of technology-computed aided design in the industry Mouli CV |
361 - 368 |
Status and review of two-dimensional carrier and dopant profiling using scanning probe microscopy De Wolf P, Stephenson R, Trenkler T, Clarysse T, Hantschel T, Vandevorst W |
369 - 380 |
Qualification of spreading resistance probe operations. I Clarysse T, Vandervorst W |
381 - 388 |
Qualification of spreading resistance probe operations. II Clarysse T, Vandervorst W |
389 - 392 |
Modeling of ultrashallow spreading resistance probe calibration curves Hillard RJ, Ramey SM, Ye CW |
393 - 400 |
Need to incorporate the real micro-contact distribution in spreading resistance correction schemes Clarysse T, Vandervorst W |
401 - 404 |
Comparison of contact radius models for ultrashallow spreading resistance profiles Hartford EJ, Ramey SM, Ye CW, Hartford CL |
405 - 408 |
Nonmonotonic behavior of the scanning capacitance microscope for large dynamic range samples Stephenson R, Verhulst A, De Wolf P, Caymax M, Vandervorst W |
409 - 413 |
Carrier concentration dependence of the scanning capacitance microscopy signal in the vicinity of p-n junctions Kopanski JJ, Marchiando JF, Rennex BG |
414 - 417 |
Limitations of the calibration curve method for determining dopant profiles from scanning capacitance microscope measurements Marchiando JF, Kopanski JJ, Albers J |
418 - 427 |
Evaluating probes for "electrical" atomic force microscopy Trenkler T, Hantschel T, Stephenson R, De Wolf P, Vandervorst W, Hellemans L, Malave A, Buchel D, Oesterschulze E, Kulisch W, Niedermann P, Sulzbach T, Ohlsson O |
428 - 434 |
Dopant dose loss at the Si-SiO2 interface Vuong HH, Rafferty CS, Eshraghi SA, Ning J, McMacken JR, Chaudhry S, McKinley J, Stevie FA |
435 - 439 |
Cluster formation during annealing of ultra-low-energy boron-implanted silicon Collart EJH, Murrell AJ, Foad MA, van den Berg JA, Zhang S, Armour D, Goldberg RD, Wang TS, Cullis AG |
440 - 444 |
SiO2 thickness determination by x-ray photoelectron spectroscopy, Auger electron spectroscopy, secondary ion mass spectrometry, Rutherford backscattering, transmission electron microscopy, and ellipsometry Cole DA, Shallenberger JR, Novak SW, Moore RL, Edgell MJ, Smith SP, Hitzman CJ, Kirchhoff JF, Principe E, Nieveen W, Huang FK, Biswas S, Bleiler RJ, Jones K |
445 - 449 |
Shallow junction formation by decaborane molecular ion implantation Foad MA, Webb R, Smith R, Matsuo J, Al-Bayati A, T-Sheng-Wang, Cullis T |
450 - 453 |
Process characterization of law-dose, threshold-voltage adjust channel implants using mercury-probe capacitance-voltage measurements Sherbondy J, Hillard R |
454 - 457 |
Production of shallow ion-implanted layers using rapid electron-beam annealing under the condition of transient-enhanced outdiffusion Kagadei VA, Proskurovsky DI |
458 - 461 |
Ultra-low-energy ion-implant simulation using computational-efficient molecular dynamics schemes and the local damage accumulation model Kang JW, Kang ES, Son MS, Hwang HJ |
462 - 467 |
Process interactions between low-energy ion implantation and rapid-thermal annealing for optimized ultrashallow junction formation Murrell AJ, Collart EJH, Foad MA, Jennings D |
468 - 471 |
Process integration issues for doping of ultrashallow junctions Current MI, Foad MA, Murrell AJ, Collart EJH, de Cock G, Jennings D |
472 - 476 |
Profiling of ultrashallow junctions Goeckner MJ, Felch SB, Fang Z, Oberhofer A, Chia VKF, Mount GR, Poulakos M, Keenan WA |
477 - 482 |
Arsenic doped buried plate characterization in deep trenches for a 0.25 mu m complementary metal-oxide-semiconductor technology by chemical etching Kruger D, Gaworzewski P, Kurps R, Schmidt K, Luhmann C |
483 - 488 |
Surface quantification by ion implantation through a removable layer Stevie FA, Roberts RF, McKinley JM, Decker MA, Granger CN, Santiesteban R, Hitzman CJ |
489 - 492 |
Accuracy of secondary ion mass spectrometry in determining ion implanted B doses as confirmed by nuclear reaction analysis Magee CW, Jacobson D, Gossmann HJ |
493 - 495 |
Use of two beam energies in secondary ion mass spectrometry analysis of shallow implants: Resolution-matched profiling Cooke GA, Ormsby TJ, Dowsett MG, Parry C, Murrell A, Collart EJH |
496 - 500 |
Depth scale distortions in shallow implant secondary ion mass spectrometry profiles Schueler BW, Reich DF |
501 - 502 |
Study of pre-equilibrium sputter rates for ultrashallow depth profiling with secondary ion mass spectrometry Ronsheim PA, Murphy RJ |
503 - 508 |
Use of an SF5+ polyatomic primary ion beam for ultrashallow depth profiling on an ion microscope secondary ion mass spectroscopy instrument Gillen G, Walker M, Thompson P, Bennett J |
509 - 513 |
Secondary ion mass spectrometry depth profiling of ultrashallow phosphorous in silicon Loesing R, Guryanov GM, Hunter JL, Griffis DP |
514 - 518 |
Depth profiling of ultra-shallow implants using a Cameca IMS-6f McKinley JM, Stevie FA, Neil T, Lee JJ, Wu L, Sieloff D, Granger C |
519 - 523 |
Depth profiling of ultrashallow B implants in silicon using a magnetic-sector secondary ion mass spectrometry instrument Napolitani E, Carnera A, Storti R, Privitera V, Priolo F, Mannino G, Moffatt S |
524 - 528 |
In search of optimum conditions for the growth of sharp and shallow B-delta markers in Si by molecular beam epitaxy Wittmaack K, Griesche J, Osten HJ, Patel SB |
529 - 532 |
New developments for shallow depth profiling with the Cameca IMS 6f Schuhmacher M, Rasser B, Desse F |
533 - 539 |
Extraction of two-dimensional metal-oxide-semiconductor field effect transistor structural information from electrical characteristics Richards WR, Shen M |
540 - 544 |
Comparison of two-dimensional carrier profiles in metal-oxide-semiconductor field-effect transistor structures obtained with scanning spreading resistance microscopy and inverse modeling De Wolf P, Vandervorst W, Smith H, Khalil N |
545 - 548 |
Effective channel length and base width measurements by scanning capacitance microscopy Raineri V, Lombardo S |
549 - 554 |
Two dimensional dopant and carrier profiles obtained by scanning capacitance microscopy on an actively biased cross-sectioned metal-oxide-semiconductor field-effect transistor Zavyalov VV, McMurray JS, Stirling SD, Williams CC, Smith H |
555 - 559 |
Practicalities and limitations of scanning capacitance microscopy for routine integrated circuit characterization Stephenson R, De Wolf P, Trenkler T, Hantschel T, Clarysse T, Jansen P, Vandervorst W |
560 - 565 |
Two-dimensional dopant profile of 0.2 mu m metal-oxide-semiconductor field effect transistors Wang XD, Mahaffy R, Tan K, Shih CK, Lee JJ, Foisy M |
566 - 571 |
Comparative study of two-dimensional junction profiling using a dopant selective etching method and the scanning capacitance spectroscopy method Mahaffy R, Shih CK, Edwards H |
572 - 575 |
Quantitative two-dimensional profiling of 0.35 mu m transistors with lightly doped drain structures McDonald A, Mahaffy R, Wang XD, Kuklewicz C, Shih CK, Dennis M, Tiffin D, Kadoch D, Duane M |
576 - 579 |
Electrochemical etching of silicon: A powerful tool for delineating junction profiles in silicon devices by transmission electron microscopy Spinella C, D'Arrigo G |
580 - 585 |
High-resolution two-dimensional dopant characterization using secondary ion mass spectrometry Ukraintsev VA, Chen PJ, Gray JT, Machala CF, Magel LK, Chang MC |
586 - 594 |
New aspects of nanopotentiometry for complementary metal-oxide-semiconductor transistors Trenkler T, Stephenson R, Jansen P, Vandervorst W, Hellemans L |
595 - 601 |
Ion implantation damage model for B, BF2, As, P, and Si in silicone Son MS, Hwang HJ |
602 - 604 |
Nondestructive profile measurements of annealed shallow implants Borden P, Nijmeijer R, Li JP, Bechtler L, Lingel K |